o
    ohn/                     @   s,  d dl mZ d dlmZ G dd deZG dd deZG dd deZG d	d
 d
eZG dd deZG dd deZ	G dd deZ
G dd deZG dd deZG dd deZG dd deZG dd deZG dd deZG dd deZG dd  d eZG d!d" d"eZG d#d$ d$eZd%S )&    )	Predicate)
Dispatcherc                   @       e Zd ZdZdZedddZdS )SquarePredicateak  
    Square matrix predicate.

    Explanation
    ===========

    ``Q.square(x)`` is true iff ``x`` is a square matrix. A square matrix
    is a matrix with the same number of rows and columns.

    Examples
    ========

    >>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix, Identity
    >>> X = MatrixSymbol('X', 2, 2)
    >>> Y = MatrixSymbol('X', 2, 3)
    >>> ask(Q.square(X))
    True
    >>> ask(Q.square(Y))
    False
    >>> ask(Q.square(ZeroMatrix(3, 3)))
    True
    >>> ask(Q.square(Identity(3)))
    True

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Square_matrix

    squareSquareHandlerzHandler for Q.square.docN__name__
__module____qualname____doc__namer   handler r   r   y/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/sympy/assumptions/predicates/matrices.pyr      s    r   c                   @   r   )SymmetricPredicatea  
    Symmetric matrix predicate.

    Explanation
    ===========

    ``Q.symmetric(x)`` is true iff ``x`` is a square matrix and is equal to
    its transpose. Every square diagonal matrix is a symmetric matrix.

    Examples
    ========

    >>> from sympy import Q, ask, MatrixSymbol
    >>> X = MatrixSymbol('X', 2, 2)
    >>> Y = MatrixSymbol('Y', 2, 3)
    >>> Z = MatrixSymbol('Z', 2, 2)
    >>> ask(Q.symmetric(X*Z), Q.symmetric(X) & Q.symmetric(Z))
    True
    >>> ask(Q.symmetric(X + Z), Q.symmetric(X) & Q.symmetric(Z))
    True
    >>> ask(Q.symmetric(Y))
    False


    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Symmetric_matrix

    	symmetricSymmetricHandlerzHandler for Q.symmetric.r   Nr
   r   r   r   r   r   '   s     r   c                   @   r   )InvertiblePredicatea  
    Invertible matrix predicate.

    Explanation
    ===========

    ``Q.invertible(x)`` is true iff ``x`` is an invertible matrix.
    A square matrix is called invertible only if its determinant is 0.

    Examples
    ========

    >>> from sympy import Q, ask, MatrixSymbol
    >>> X = MatrixSymbol('X', 2, 2)
    >>> Y = MatrixSymbol('Y', 2, 3)
    >>> Z = MatrixSymbol('Z', 2, 2)
    >>> ask(Q.invertible(X*Y), Q.invertible(X))
    False
    >>> ask(Q.invertible(X*Z), Q.invertible(X) & Q.invertible(Z))
    True
    >>> ask(Q.invertible(X), Q.fullrank(X) & Q.square(X))
    True

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Invertible_matrix

    
invertibleInvertibleHandlerzHandler for Q.invertible.r   Nr
   r   r   r   r   r   L   s    r   c                   @   r   )OrthogonalPredicateao  
    Orthogonal matrix predicate.

    Explanation
    ===========

    ``Q.orthogonal(x)`` is true iff ``x`` is an orthogonal matrix.
    A square matrix ``M`` is an orthogonal matrix if it satisfies
    ``M^TM = MM^T = I`` where ``M^T`` is the transpose matrix of
    ``M`` and ``I`` is an identity matrix. Note that an orthogonal
    matrix is necessarily invertible.

    Examples
    ========

    >>> from sympy import Q, ask, MatrixSymbol, Identity
    >>> X = MatrixSymbol('X', 2, 2)
    >>> Y = MatrixSymbol('Y', 2, 3)
    >>> Z = MatrixSymbol('Z', 2, 2)
    >>> ask(Q.orthogonal(Y))
    False
    >>> ask(Q.orthogonal(X*Z*X), Q.orthogonal(X) & Q.orthogonal(Z))
    True
    >>> ask(Q.orthogonal(Identity(3)))
    True
    >>> ask(Q.invertible(X), Q.orthogonal(X))
    True

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Orthogonal_matrix

    
orthogonalOrthogonalHandlerzHandler for key 'orthogonal'.r   Nr
   r   r   r   r   r   n   s    "r   c                   @   r   )UnitaryPredicatea  
    Unitary matrix predicate.

    Explanation
    ===========

    ``Q.unitary(x)`` is true iff ``x`` is a unitary matrix.
    Unitary matrix is an analogue to orthogonal matrix. A square
    matrix ``M`` with complex elements is unitary if :math:``M^TM = MM^T= I``
    where :math:``M^T`` is the conjugate transpose matrix of ``M``.

    Examples
    ========

    >>> from sympy import Q, ask, MatrixSymbol, Identity
    >>> X = MatrixSymbol('X', 2, 2)
    >>> Y = MatrixSymbol('Y', 2, 3)
    >>> Z = MatrixSymbol('Z', 2, 2)
    >>> ask(Q.unitary(Y))
    False
    >>> ask(Q.unitary(X*Z*X), Q.unitary(X) & Q.unitary(Z))
    True
    >>> ask(Q.unitary(Identity(3)))
    True

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Unitary_matrix

    unitaryUnitaryHandlerzHandler for key 'unitary'.r   Nr
   r   r   r   r   r          r   c                   @   r   )FullRankPredicateaA  
    Fullrank matrix predicate.

    Explanation
    ===========

    ``Q.fullrank(x)`` is true iff ``x`` is a full rank matrix.
    A matrix is full rank if all rows and columns of the matrix
    are linearly independent. A square matrix is full rank iff
    its determinant is nonzero.

    Examples
    ========

    >>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix, Identity
    >>> X = MatrixSymbol('X', 2, 2)
    >>> ask(Q.fullrank(X.T), Q.fullrank(X))
    True
    >>> ask(Q.fullrank(ZeroMatrix(3, 3)))
    False
    >>> ask(Q.fullrank(Identity(3)))
    True

    fullrankFullRankHandlerzHandler for key 'fullrank'.r   Nr
   r   r   r   r   r           r    c                   @   r   )PositiveDefinitePredicatea  
    Positive definite matrix predicate.

    Explanation
    ===========

    If $M$ is a :math:`n \times n` symmetric real matrix, it is said
    to be positive definite if :math:`Z^TMZ` is positive for
    every non-zero column vector $Z$ of $n$ real numbers.

    Examples
    ========

    >>> from sympy import Q, ask, MatrixSymbol, Identity
    >>> X = MatrixSymbol('X', 2, 2)
    >>> Y = MatrixSymbol('Y', 2, 3)
    >>> Z = MatrixSymbol('Z', 2, 2)
    >>> ask(Q.positive_definite(Y))
    False
    >>> ask(Q.positive_definite(Identity(3)))
    True
    >>> ask(Q.positive_definite(X + Z), Q.positive_definite(X) &
    ...     Q.positive_definite(Z))
    True

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Positive-definite_matrix

    positive_definitePositiveDefiniteHandlerz$Handler for key 'positive_definite'.r   Nr
   r   r   r   r   r$      r   r$   c                   @   r   )UpperTriangularPredicatea  
    Upper triangular matrix predicate.

    Explanation
    ===========

    A matrix $M$ is called upper triangular matrix if :math:`M_{ij}=0`
    for :math:`i<j`.

    Examples
    ========

    >>> from sympy import Q, ask, ZeroMatrix, Identity
    >>> ask(Q.upper_triangular(Identity(3)))
    True
    >>> ask(Q.upper_triangular(ZeroMatrix(3, 3)))
    True

    References
    ==========

    .. [1] https://mathworld.wolfram.com/UpperTriangularMatrix.html

    upper_triangularUpperTriangularHandlerz#Handler for key 'upper_triangular'.r   Nr
   r   r   r   r   r'      r#   r'   c                   @   r   )LowerTriangularPredicatea  
    Lower triangular matrix predicate.

    Explanation
    ===========

    A matrix $M$ is called lower triangular matrix if :math:`M_{ij}=0`
    for :math:`i>j`.

    Examples
    ========

    >>> from sympy import Q, ask, ZeroMatrix, Identity
    >>> ask(Q.lower_triangular(Identity(3)))
    True
    >>> ask(Q.lower_triangular(ZeroMatrix(3, 3)))
    True

    References
    ==========

    .. [1] https://mathworld.wolfram.com/LowerTriangularMatrix.html

    lower_triangularLowerTriangularHandlerz#Handler for key 'lower_triangular'.r   Nr
   r   r   r   r   r*     r#   r*   c                   @   r   )DiagonalPredicateaN  
    Diagonal matrix predicate.

    Explanation
    ===========

    ``Q.diagonal(x)`` is true iff ``x`` is a diagonal matrix. A diagonal
    matrix is a matrix in which the entries outside the main diagonal
    are all zero.

    Examples
    ========

    >>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix
    >>> X = MatrixSymbol('X', 2, 2)
    >>> ask(Q.diagonal(ZeroMatrix(3, 3)))
    True
    >>> ask(Q.diagonal(X), Q.lower_triangular(X) &
    ...     Q.upper_triangular(X))
    True

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Diagonal_matrix

    diagonalDiagonalHandlerzHandler for key 'diagonal'.r   Nr
   r   r   r   r   r-   4  s    r-   c                   @   r   )IntegerElementsPredicateaT  
    Integer elements matrix predicate.

    Explanation
    ===========

    ``Q.integer_elements(x)`` is true iff all the elements of ``x``
    are integers.

    Examples
    ========

    >>> from sympy import Q, ask, MatrixSymbol
    >>> X = MatrixSymbol('X', 4, 4)
    >>> ask(Q.integer(X[1, 2]), Q.integer_elements(X))
    True

    integer_elementsIntegerElementsHandlerz#Handler for key 'integer_elements'.r   Nr
   r   r   r   r   r0   T      r0   c                   @   r   )RealElementsPredicateaL  
    Real elements matrix predicate.

    Explanation
    ===========

    ``Q.real_elements(x)`` is true iff all the elements of ``x``
    are real numbers.

    Examples
    ========

    >>> from sympy import Q, ask, MatrixSymbol
    >>> X = MatrixSymbol('X', 4, 4)
    >>> ask(Q.real(X[1, 2]), Q.real_elements(X))
    True

    real_elementsRealElementsHandlerz Handler for key 'real_elements'.r   Nr
   r   r   r   r   r4   k  r3   r4   c                   @   r   )ComplexElementsPredicatea  
    Complex elements matrix predicate.

    Explanation
    ===========

    ``Q.complex_elements(x)`` is true iff all the elements of ``x``
    are complex numbers.

    Examples
    ========

    >>> from sympy import Q, ask, MatrixSymbol
    >>> X = MatrixSymbol('X', 4, 4)
    >>> ask(Q.complex(X[1, 2]), Q.complex_elements(X))
    True
    >>> ask(Q.complex_elements(X), Q.integer_elements(X))
    True

    complex_elementsComplexElementsHandlerz#Handler for key 'complex_elements'.r   Nr
   r   r   r   r   r7     s    r7   c                   @   r   )SingularPredicatea  
    Singular matrix predicate.

    A matrix is singular iff the value of its determinant is 0.

    Examples
    ========

    >>> from sympy import Q, ask, MatrixSymbol
    >>> X = MatrixSymbol('X', 4, 4)
    >>> ask(Q.singular(X), Q.invertible(X))
    False
    >>> ask(Q.singular(X), ~Q.invertible(X))
    True

    References
    ==========

    .. [1] https://mathworld.wolfram.com/SingularMatrix.html

    singularSingularHandlerzPredicate fore key 'singular'.r   Nr
   r   r   r   r   r:     s    r:   c                   @   r   )NormalPredicatea^  
    Normal matrix predicate.

    A matrix is normal if it commutes with its conjugate transpose.

    Examples
    ========

    >>> from sympy import Q, ask, MatrixSymbol
    >>> X = MatrixSymbol('X', 4, 4)
    >>> ask(Q.normal(X), Q.unitary(X))
    True

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Normal_matrix

    normalNormalHandlerzPredicate fore key 'normal'.r   Nr
   r   r   r   r   r=     s    r=   c                   @   r   )TriangularPredicatea  
    Triangular matrix predicate.

    Explanation
    ===========

    ``Q.triangular(X)`` is true if ``X`` is one that is either lower
    triangular or upper triangular.

    Examples
    ========

    >>> from sympy import Q, ask, MatrixSymbol
    >>> X = MatrixSymbol('X', 4, 4)
    >>> ask(Q.triangular(X), Q.upper_triangular(X))
    True
    >>> ask(Q.triangular(X), Q.lower_triangular(X))
    True

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Triangular_matrix

    
triangularTriangularHandlerz Predicate fore key 'triangular'.r   Nr
   r   r   r   r   r@     s    r@   c                   @   r   )UnitTriangularPredicateaJ  
    Unit triangular matrix predicate.

    Explanation
    ===========

    A unit triangular matrix is a triangular matrix with 1s
    on the diagonal.

    Examples
    ========

    >>> from sympy import Q, ask, MatrixSymbol
    >>> X = MatrixSymbol('X', 4, 4)
    >>> ask(Q.triangular(X), Q.unit_triangular(X))
    True

    unit_triangularUnitTriangularHandlerz%Predicate fore key 'unit_triangular'.r   Nr
   r   r   r   r   rC     r3   rC   N)sympy.assumptionsr   sympy.multipledispatchr   r   r   r   r   r   r    r$   r'   r*   r-   r0   r4   r7   r:   r=   r@   rC   r   r   r   r   <module>   s&    #%"'$$ 