o
    UhB                     @  s   d dl mZ d dlmZmZ d dlmZmZ d dlm	Z
 d dlmZmZ dd Zdd	 Zd
d ZdddddddZdddddddZdddddddZdddddddZdd ZdddddZdddddZdS )    )annotations)common_affixconv_sequences)is_nonesetupPandas)Indel_py)EditopEditopsc           	      C  sn   t | }t |}|\}}}|| ||  }||kr(t||| || |  }|S t||| || |  }|S )N)lenmin)	s1s2weightslen1len2insertdeletereplacemax_dist r   u/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/rapidfuzz/distance/Levenshtein_py.py_levenshtein_maximum   s   
r   c                 C  s   t | }|\}}}ttd|d | |}|D ];}|d }	|d  |7  < t|D ](}
|	}| |
 |krEt||
 | ||
d  | |	| }||
d  }	|||
d < q)q|d S )Nr      )r
   listranger   )r   r   r   r   r   r   r   cachech2tempixr   r   r   _uniform_generic   s   
$r!   c                 C  s   | st |S dt | > d }d}t | }dt | d > }i }|j}d}| D ]}	||	d|B ||	< |dK }q%|D ]E}
||
d}|}||@ | |A |B |B }|||B  B }||@ }|||@ dk7 }|||@ dk8 }|d> dB }|d> }|||B  B }||@ }q7|S Nr   r   )r
   get)r   r   VPVNcurrDistmaskblock	block_getr    ch1r   PM_jXD0HPHNr   r   r   _uniform_distance,   s2   


r0   r   r   r   N)r   	processorscore_cutoff
score_hintc                C  s   |}|dur|| } ||}t | |\} }|du s|dkr#t| |}n|dkr.t| |}nt| ||}|du s<||kr>|S |d S )a  
    Calculates the minimum number of insertions, deletions, and substitutions
    required to change one sequence into the other according to Levenshtein with custom
    costs for insertion, deletion and substitution

    Parameters
    ----------
    s1 : Sequence[Hashable]
        First string to compare.
    s2 : Sequence[Hashable]
        Second string to compare.
    weights : tuple[int, int, int] or None, optional
        The weights for the three operations in the form
        (insertion, deletion, substitution). Default is (1, 1, 1),
        which gives all three operations a weight of 1.
    processor : callable, optional
        Optional callable that is used to preprocess the strings before
        comparing them. Default is None, which deactivates this behaviour.
    score_cutoff : int, optional
        Maximum distance between s1 and s2, that is
        considered as a result. If the distance is bigger than score_cutoff,
        score_cutoff + 1 is returned instead. Default is None, which deactivates
        this behaviour.
    score_hint : int, optional
        Expected distance between s1 and s2. This is used to select a
        faster implementation. Default is None, which deactivates this behaviour.

    Returns
    -------
    distance : int
        distance between s1 and s2

    Raises
    ------
    ValueError
        If unsupported weights are provided a ValueError is thrown

    Examples
    --------
    Find the Levenshtein distance between two strings:

    >>> from rapidfuzz.distance import Levenshtein
    >>> Levenshtein.distance("lewenstein", "levenshtein")
    2

    Setting a maximum distance allows the implementation to select
    a more efficient implementation:

    >>> Levenshtein.distance("lewenstein", "levenshtein", score_cutoff=1)
    2

    It is possible to select different weights by passing a `weight`
    tuple.

    >>> Levenshtein.distance("lewenstein", "levenshtein", weights=(1,1,2))
    3
    Nr1   )r   r      r   )r   r0   Indeldistancer!   )r   r   r   r2   r3   r4   _distr   r   r   r7   P   s   Br7   c          
      C  sl   |}|dur|| } ||}t | |\} }|pd}t| ||}t| ||d}|| }	|du s2|	|kr4|	S dS )a  
    Calculates the levenshtein similarity in the range [max, 0] using custom
    costs for insertion, deletion and substitution.

    This is calculated as ``max - distance``, where max is the maximal possible
    Levenshtein distance given the lengths of the sequences s1/s2 and the weights.

    Parameters
    ----------
    s1 : Sequence[Hashable]
        First string to compare.
    s2 : Sequence[Hashable]
        Second string to compare.
    weights : tuple[int, int, int] or None, optional
        The weights for the three operations in the form
        (insertion, deletion, substitution). Default is (1, 1, 1),
        which gives all three operations a weight of 1.
    processor : callable, optional
        Optional callable that is used to preprocess the strings before
        comparing them. Default is None, which deactivates this behaviour.
    score_cutoff : int, optional
        Maximum distance between s1 and s2, that is
        considered as a result. If the similarity is smaller than score_cutoff,
        0 is returned instead. Default is None, which deactivates
        this behaviour.
    score_hint : int, optional
        Expected similarity between s1 and s2. This is used to select a
        faster implementation. Default is None, which deactivates this behaviour.

    Returns
    -------
    similarity : int
        similarity between s1 and s2

    Raises
    ------
    ValueError
        If unsupported weights are provided a ValueError is thrown
    Nr1   r   r   )r   r   r7   )
r   r   r   r2   r3   r4   r8   maximumr9   simr   r   r   
similarity   s   0r=   c          
      C  s   |}t   t| st|rdS |dur|| } ||}t| |\} }|p%d}t| ||}t| ||d}|r9|| nd}	|du sC|	|krE|	S dS )a  
    Calculates a normalized levenshtein distance in the range [1, 0] using custom
    costs for insertion, deletion and substitution.

    This is calculated as ``distance / max``, where max is the maximal possible
    Levenshtein distance given the lengths of the sequences s1/s2 and the weights.

    Parameters
    ----------
    s1 : Sequence[Hashable]
        First string to compare.
    s2 : Sequence[Hashable]
        Second string to compare.
    weights : tuple[int, int, int] or None, optional
        The weights for the three operations in the form
        (insertion, deletion, substitution). Default is (1, 1, 1),
        which gives all three operations a weight of 1.
    processor : callable, optional
        Optional callable that is used to preprocess the strings before
        comparing them. Default is None, which deactivates this behaviour.
    score_cutoff : float, optional
        Optional argument for a score threshold as a float between 0 and 1.0.
        For norm_dist > score_cutoff 1.0 is returned instead. Default is None,
        which deactivates this behaviour.
    score_hint : float, optional
        Expected normalized distance between s1 and s2. This is used to select a
        faster implementation. Default is None, which deactivates this behaviour.

    Returns
    -------
    norm_dist : float
        normalized distance between s1 and s2 as a float between 1.0 and 0.0

    Raises
    ------
    ValueError
        If unsupported weights are provided a ValueError is thrown
          ?Nr1   r:   r   r   )r   r   r   r   r7   )
r   r   r   r2   r3   r4   r8   r;   r9   	norm_distr   r   r   normalized_distance   s   /r@   c          	      C  sz   |}t   t| st|rdS |dur|| } ||}t| |\} }|p%d}t| ||d}d| }|du s9||kr;|S dS )a  
    Calculates a normalized levenshtein similarity in the range [0, 1] using custom
    costs for insertion, deletion and substitution.

    This is calculated as ``1 - normalized_distance``

    Parameters
    ----------
    s1 : Sequence[Hashable]
        First string to compare.
    s2 : Sequence[Hashable]
        Second string to compare.
    weights : tuple[int, int, int] or None, optional
        The weights for the three operations in the form
        (insertion, deletion, substitution). Default is (1, 1, 1),
        which gives all three operations a weight of 1.
    processor : callable, optional
        Optional callable that is used to preprocess the strings before
        comparing them. Default is None, which deactivates this behaviour.
    score_cutoff : float, optional
        Optional argument for a score threshold as a float between 0 and 1.0.
        For norm_sim < score_cutoff 0 is returned instead. Default is None,
        which deactivates this behaviour.
    score_hint : int, optional
        Expected normalized similarity between s1 and s2. This is used to select a
        faster implementation. Default is None, which deactivates this behaviour.

    Returns
    -------
    norm_sim : float
        normalized similarity between s1 and s2 as a float between 0 and 1.0

    Raises
    ------
    ValueError
        If unsupported weights are provided a ValueError is thrown

    Examples
    --------
    Find the normalized Levenshtein similarity between two strings:

    >>> from rapidfuzz.distance import Levenshtein
    >>> Levenshtein.normalized_similarity("lewenstein", "levenshtein")
    0.81818181818181

    Setting a score_cutoff allows the implementation to select
    a more efficient implementation:

    >>> Levenshtein.normalized_similarity("lewenstein", "levenshtein", score_cutoff=0.85)
    0.0

    It is possible to select different weights by passing a `weight`
    tuple.

    >>> Levenshtein.normalized_similarity("lewenstein", "levenshtein", weights=(1,1,2))
    0.85714285714285

    When a different processor is used s1 and s2 do not have to be strings

    >>> Levenshtein.normalized_similarity(["lewenstein"], ["levenshtein"], processor=lambda s: s[0])
    0.81818181818181
    g        Nr1   r:   r>   r   )r   r   r   r@   )	r   r   r   r2   r3   r4   r8   r?   norm_simr   r   r   normalized_similarity  s   GrB   c                 C  s&  | s	t |g g fS dt | > d }d}t | }dt | d > }i }|j}d}| D ]}	||	d|B ||	< |dK }q(g }
g }|D ]O}||d}|}||@ | |A |B |B }|||B  B }||@ }|||@ dk7 }|||@ dk8 }|d> dB }|d> }|||B  B }||@ }|
| || q>||
|fS r"   )r
   r#   append)r   r   r$   r%   r&   r'   r(   r)   r    r*   	matrix_VP	matrix_VNr   r+   r,   r-   r.   r/   r   r   r   _matrixv  s:   



rF   r2   r4   c                C  s"  |}|dur|| } ||}t | |\} }t| |\}}| |t| |  } ||t||  }t| |\}}}	tg dd}
t| | | |
_t|| | |
_|dkrV|
S dg| }t| }t|}|dkr|dkr||d  d|d > @ r|d8 }|d8 }td|| || ||< n?|d8 }|r|	|d  d|d > @ r|d8 }td|| || ||< n|d8 }| | || kr|d8 }td|| || ||< |dkr|dksk|dkr|d8 }|d8 }td|| || ||< |dks|dkr|d8 }|d8 }td|| || ||< |dks||
_|
S )u  
    Return Editops describing how to turn s1 into s2.

    Parameters
    ----------
    s1 : Sequence[Hashable]
        First string to compare.
    s2 : Sequence[Hashable]
        Second string to compare.
    processor : callable, optional
        Optional callable that is used to preprocess the strings before
        comparing them. Default is None, which deactivates this behaviour.
    score_hint : int, optional
        Expected distance between s1 and s2. This is used to select a
        faster implementation. Default is None, which deactivates this behaviour.

    Returns
    -------
    editops : Editops
        edit operations required to turn s1 into s2

    Notes
    -----
    The alignment is calculated using an algorithm of Heikki Hyyrö, which is
    described [8]_. It has a time complexity and memory usage of ``O([N/64] * M)``.

    References
    ----------
    .. [8] Hyyrö, Heikki. "A Note on Bit-Parallel Alignment Computation."
           Stringology (2004).

    Examples
    --------
    >>> from rapidfuzz.distance import Levenshtein
    >>> for tag, src_pos, dest_pos in Levenshtein.editops("qabxcd", "abycdf"):
    ...    print(("%7s s1[%d] s2[%d]" % (tag, src_pos, dest_pos)))
     delete s1[1] s2[0]
    replace s1[3] s2[2]
     insert s1[6] s2[5]
    Nr   r   r   r   r   )	r   r   r
   rF   r	   _src_len	_dest_lenr   _editops)r   r   r2   r4   r8   
prefix_len
suffix_lenr9   r$   r%   editopseditop_listcolrowr   r   r   rM     sV   /

rM   c                C  s   t | |||d S )u  
    Return Opcodes describing how to turn s1 into s2.

    Parameters
    ----------
    s1 : Sequence[Hashable]
        First string to compare.
    s2 : Sequence[Hashable]
        Second string to compare.
    processor : callable, optional
        Optional callable that is used to preprocess the strings before
        comparing them. Default is None, which deactivates this behaviour.
    score_hint : int, optional
        Expected distance between s1 and s2. This is used to select a
        faster implementation. Default is None, which deactivates this behaviour.

    Returns
    -------
    opcodes : Opcodes
        edit operations required to turn s1 into s2

    Notes
    -----
    The alignment is calculated using an algorithm of Heikki Hyyrö, which is
    described [9]_. It has a time complexity and memory usage of ``O([N/64] * M)``.

    References
    ----------
    .. [9] Hyyrö, Heikki. "A Note on Bit-Parallel Alignment Computation."
           Stringology (2004).

    Examples
    --------
    >>> from rapidfuzz.distance import Levenshtein

    >>> a = "qabxcd"
    >>> b = "abycdf"
    >>> for tag, i1, i2, j1, j2 in Levenshtein.opcodes("qabxcd", "abycdf"):
    ...    print(("%7s a[%d:%d] (%s) b[%d:%d] (%s)" %
    ...           (tag, i1, i2, a[i1:i2], j1, j2, b[j1:j2])))
     delete a[0:1] (q) b[0:0] ()
      equal a[1:3] (ab) b[0:2] (ab)
    replace a[3:4] (x) b[2:3] (y)
      equal a[4:6] (cd) b[3:5] (cd)
     insert a[6:6] () b[5:6] (f)
    rG   )rM   
as_opcodes)r   r   r2   r4   r   r   r   opcodes  s   5rR   )
__future__r   rapidfuzz._common_pyr   r   rapidfuzz._utilsr   r   rapidfuzz.distancer   r6   !rapidfuzz.distance._initialize_pyr   r	   r   r!   r0   r7   r=   r@   rB   rF   rM   rR   r   r   r   r   <module>   sF   (VADW-k