o
    h                     @  s   d dl mZ d dlmZ d dlZd dlmZ d dlm	Z	m
Z
 d dlmZ er:d dlmZ d dlmZ d d	lmZmZ 	
ddddZdddZd ddZdS )!    )annotations)TYPE_CHECKINGNremove_na_arraylike)
MultiIndexconcat)unpack_single_str_list)Hashable)
IndexLabel)	DataFrameSerieshistdatar   kindstrreturn"dict[Hashable, DataFrame | Series]c                   s>   |dkrdndt  jtsJ  fdd jj D S )a~  
    Create data for iteration given `by` is assigned or not, and it is only
    used in both hist and boxplot.

    If `by` is assigned, return a dictionary of DataFrames in which the key of
    dictionary is the values in groups.
    If `by` is not assigned, return input as is, and this preserves current
    status of iter_data.

    Parameters
    ----------
    data : reformatted grouped data from `_compute_plot_data` method.
    kind : str, plot kind. This function is only used for `hist` and `box` plots.

    Returns
    -------
    iter_data : DataFrame or Dictionary of DataFrames

    Examples
    --------
    If `by` is assigned:

    >>> import numpy as np
    >>> tuples = [('h1', 'a'), ('h1', 'b'), ('h2', 'a'), ('h2', 'b')]
    >>> mi = pd.MultiIndex.from_tuples(tuples)
    >>> value = [[1, 3, np.nan, np.nan],
    ...          [3, 4, np.nan, np.nan], [np.nan, np.nan, 5, 6]]
    >>> data = pd.DataFrame(value, columns=mi)
    >>> create_iter_data_given_by(data)
    {'h1':     h1
         a    b
    0  1.0  3.0
    1  3.0  4.0
    2  NaN  NaN, 'h2':     h2
         a    b
    0  NaN  NaN
    1  NaN  NaN
    2  5.0  6.0}
    r   r      c                   s,   i | ]}| j d d  j|kf qS )N)loccolumnsget_level_values.0colr   level w/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/groupby.py
<dictcomp>R   s    z-create_iter_data_given_by.<locals>.<dictcomp>)
isinstancer   r   levels)r   r   r   r   r   create_iter_data_given_by   s   /
r!   byr
   colsc           
      C  s\   t |}| |}g }|D ]\}}t|g|g}|| }	||	_||	 qt|dd} | S )al  
    Internal function to group data, and reassign multiindex column names onto the
    result in order to let grouped data be used in _compute_plot_data method.

    Parameters
    ----------
    data : Original DataFrame to plot
    by : grouped `by` parameter selected by users
    cols : columns of data set (excluding columns used in `by`)

    Returns
    -------
    Output is the reconstructed DataFrame with MultiIndex columns. The first level
    of MI is unique values of groups, and second level of MI is the columns
    selected by users.

    Examples
    --------
    >>> d = {'h': ['h1', 'h1', 'h2'], 'a': [1, 3, 5], 'b': [3, 4, 6]}
    >>> df = pd.DataFrame(d)
    >>> reconstruct_data_with_by(df, by='h', cols=['a', 'b'])
       h1      h2
       a     b     a     b
    0  1.0   3.0   NaN   NaN
    1  3.0   4.0   NaN   NaN
    2  NaN   NaN   5.0   6.0
    r   )axis)r   groupbyr   from_productr   appendr   )
r   r"   r#   by_modifiedgrouped	data_listkeygroupr   	sub_groupr   r   r   reconstruct_data_with_byX   s   
r.   y
np.ndarrayIndexLabel | Nonec                 C  s6   |durt | jdkrtdd | jD jS t| S )zInternal function to reformat y given `by` is applied or not for hist plot.

    If by is None, input y is 1-d with NaN removed; and if by is not None, groupby
    will take place and input y is multi-dimensional array.
    Nr   c                 S  s   g | ]}t |qS r   r   r   r   r   r   
<listcomp>   s    z,reformat_hist_y_given_by.<locals>.<listcomp>)lenshapenparrayTr   )r/   r"   r   r   r   reformat_hist_y_given_by   s   r8   )r   )r   r   r   r   r   r   )r   r   r"   r
   r#   r
   r   r   )r/   r0   r"   r1   r   r0   )
__future__r   typingr   numpyr5   pandas.core.dtypes.missingr   pandasr   r    pandas.plotting._matplotlib.miscr   collections.abcr	   pandas._typingr
   r   r   r!   r.   r8   r   r   r   r   <module>   s    
=.