o
    h                     @   s:   d Z ddlZddlmZ dgZejdddd	ddZdS )
a  Generator for Sudoku graphs

This module gives a generator for n-Sudoku graphs. It can be used to develop
algorithms for solving or generating Sudoku puzzles.

A completed Sudoku grid is a 9x9 array of integers between 1 and 9, with no
number appearing twice in the same row, column, or 3x3 box.

+---------+---------+---------+
| | 8 6 4 | | 3 7 1 | | 2 5 9 |
| | 3 2 5 | | 8 4 9 | | 7 6 1 |
| | 9 7 1 | | 2 6 5 | | 8 4 3 |
+---------+---------+---------+
| | 4 3 6 | | 1 9 2 | | 5 8 7 |
| | 1 9 8 | | 6 5 7 | | 4 3 2 |
| | 2 5 7 | | 4 8 3 | | 9 1 6 |
+---------+---------+---------+
| | 6 8 9 | | 7 3 4 | | 1 2 5 |
| | 7 1 3 | | 5 2 8 | | 6 9 4 |
| | 5 4 2 | | 9 1 6 | | 3 7 8 |
+---------+---------+---------+


The Sudoku graph is an undirected graph with 81 vertices, corresponding to
the cells of a Sudoku grid. It is a regular graph of degree 20. Two distinct
vertices are adjacent if and only if the corresponding cells belong to the
same row, column, or box. A completed Sudoku grid corresponds to a vertex
coloring of the Sudoku graph with nine colors.

More generally, the n-Sudoku graph is a graph with n^4 vertices, corresponding
to the cells of an n^2 by n^2 grid. Two distinct vertices are adjacent if and
only if they belong to the same row, column, or n by n box.

References
----------
.. [1] Herzberg, A. M., & Murty, M. R. (2007). Sudoku squares and chromatic
    polynomials. Notices of the AMS, 54(6), 708-717.
.. [2] Sander, Torsten (2009), "Sudoku graphs are integral",
    Electronic Journal of Combinatorics, 16 (1): Note 25, 7pp, MR 2529816
.. [3] Wikipedia contributors. "Glossary of Sudoku." Wikipedia, The Free
    Encyclopedia, 3 Dec. 2019. Web. 22 Dec. 2019.
    N)NetworkXErrorsudoku_graphT)graphsreturns_graph   c                 C   sN  | dk rt d| |  }||  }||  }t|}| dk r|S t|D ]}|| }td|D ]}t|D ]}||| ||  q4q.q#t|D ]}	t|	||D ]}t|	||D ]}||| qWqOqGt| D ]>}
t| D ]7}||
 | |  }td|D ]'}t|D ] }|||   |||    }|||   |||    }||| qq{qlqf|S )a  Returns the n-Sudoku graph. The default value of n is 3.

    The n-Sudoku graph is a graph with n^4 vertices, corresponding to the
    cells of an n^2 by n^2 grid. Two distinct vertices are adjacent if and
    only if they belong to the same row, column, or n-by-n box.

    Parameters
    ----------
    n: integer
       The order of the Sudoku graph, equal to the square root of the
       number of rows. The default is 3.

    Returns
    -------
    NetworkX graph
        The n-Sudoku graph Sud(n).

    Examples
    --------
    >>> G = nx.sudoku_graph()
    >>> G.number_of_nodes()
    81
    >>> G.number_of_edges()
    810
    >>> sorted(G.neighbors(42))
    [6, 15, 24, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 51, 52, 53, 60, 69, 78]
    >>> G = nx.sudoku_graph(2)
    >>> G.number_of_nodes()
    16
    >>> G.number_of_edges()
    56

    References
    ----------
    .. [1] Herzberg, A. M., & Murty, M. R. (2007). Sudoku squares and chromatic
       polynomials. Notices of the AMS, 54(6), 708-717.
    .. [2] Sander, Torsten (2009), "Sudoku graphs are integral",
       Electronic Journal of Combinatorics, 16 (1): Note 25, 7pp, MR 2529816
    .. [3] Wikipedia contributors. "Glossary of Sudoku." Wikipedia, The Free
       Encyclopedia, 3 Dec. 2019. Web. 22 Dec. 2019.
    r   z0The order must be greater than or equal to zero.      )r   nxempty_graphrangeadd_edge)nn2n3n4Grow_no	row_startjicol_noband_nostack_no	box_startuv r   n/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/networkx/generators/sudoku.pyr   2   sB   ,
)r   )__doc__networkxr	   networkx.exceptionr   __all___dispatchabler   r   r   r   r   <module>   s    +