o
    lÇh±H  ã                   @   s    d dl mZ G dd„ deƒZdS )é   )Úxrangec                   @   sP   e Zd Zdd„ Zddd„Zdd„ Zdd	„ Zd
d„ Zddd„Zdd„ Z	dd„ Z
dS )ÚMatrixCalculusMethodsc              	      sL  ‡ fdd„}d}d}	 ||ƒˆ j k rn|d7 }q||7 }ttdˆ  ˆ  |d¡¡ƒƒ}|}ˆ j}ˆ  j|d 7  _zi|d|  }|j}ˆ  |¡}	ˆ  |¡}
ˆ  |¡}ˆ  	d¡}t
d|d ƒD ]+}|ˆ  	|| d ¡d| | d |  9 }|| }|| }|
|7 }
|	d	| | 7 }	q]ˆ  |	|
¡}t
|ƒD ]}|| }q“W |ˆ _|d S |ˆ _w )
a,  
        Exponential of a matrix using Pade approximants.

        See G. H. Golub, C. F. van Loan 'Matrix Computations',
        third Ed., page 572

        TODO:
         - find a good estimate for q
         - reduce the number of matrix multiplications to improve
           performance
        c                    sB   ˆ   d¡dd|    ˆ  | ¡d  ˆ  d|  ¡d d|  d   S )Nr   é   é   )ÚmpfÚ	factorial)Úp©Úctx© úl/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/mpmath/matrices/calculus.pyÚeps_pade   s
   ÿÿz1MatrixCalculusMethods._exp_pade.<locals>.eps_padeé   é   r   Úinfr   r   éÿÿÿÿ)ÚepsÚintÚmaxÚmagÚmnormÚprecÚdpsÚrowsÚeyer   ÚrangeÚlu_solve_mat)r
   Úar   ÚqÚextraqÚjÚextrar   ÚnaÚdenÚnumÚxÚcÚkÚcxÚfr   r	   r   Ú	_exp_pade   sB   ý



*
ÿÿzMatrixCalculusMethods._exp_padeÚtaylorc           
   	   C   s<  |dkr&| j }z|  |¡}|  j d|j 7  _ |  |¡}W || _ |S || _ w |  |¡}| j }ttd|  |  |d¡¡ƒƒ}|td|d  ƒ7 }zM|  j dd|  7  _ | j
 }|d|  }|}|d | }d}		 ||d|  	|	¡  9 }|  |d¡|k r{n	||7 }|	d7 }	qgt
|ƒD ]}	|| }qˆW || _ n|| _ w |d9 }|S )aþ  
        Computes the matrix exponential of a square matrix `A`, which is defined
        by the power series

        .. math ::

            \exp(A) = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \ldots

        With method='taylor', the matrix exponential is computed
        using the Taylor series. With method='pade', Pade approximants
        are used instead.

        **Examples**

        Basic examples::

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = True
            >>> expm(zeros(3))
            [1.0  0.0  0.0]
            [0.0  1.0  0.0]
            [0.0  0.0  1.0]
            >>> expm(eye(3))
            [2.71828182845905               0.0               0.0]
            [             0.0  2.71828182845905               0.0]
            [             0.0               0.0  2.71828182845905]
            >>> expm([[1,1,0],[1,0,1],[0,1,0]])
            [ 3.86814500615414  2.26812870852145  0.841130841230196]
            [ 2.26812870852145  2.44114713886289   1.42699786729125]
            [0.841130841230196  1.42699786729125    1.6000162976327]
            >>> expm([[1,1,0],[1,0,1],[0,1,0]], method='pade')
            [ 3.86814500615414  2.26812870852145  0.841130841230196]
            [ 2.26812870852145  2.44114713886289   1.42699786729125]
            [0.841130841230196  1.42699786729125    1.6000162976327]
            >>> expm([[1+j, 0], [1+j,1]])
            [(1.46869393991589 + 2.28735528717884j)                        0.0]
            [  (1.03776739863568 + 3.536943175722j)  (2.71828182845905 + 0.0j)]

        Matrices with large entries are allowed::

            >>> expm(matrix([[1,2],[2,3]])**25)
            [5.65024064048415e+2050488462815550  9.14228140091932e+2050488462815550]
            [9.14228140091932e+2050488462815550  1.47925220414035e+2050488462815551]

        The identity `\exp(A+B) = \exp(A) \exp(B)` does not hold for
        noncommuting matrices::

            >>> A = hilbert(3)
            >>> B = A + eye(3)
            >>> chop(mnorm(A*B - B*A))
            0.0
            >>> chop(mnorm(expm(A+B) - expm(A)*expm(B)))
            0.0
            >>> B = A + ones(3)
            >>> mnorm(A*B - B*A)
            1.8
            >>> mnorm(expm(A+B) - expm(A)*expm(B))
            42.0927851137247

        Úpader   r   r   ç      à?é
   é    )r   Úmatrixr   r*   r   r   r   r   r   r   r   )
r
   ÚAÚmethodr   Úresr    ÚtolÚTÚYr'   r   r   r   Úexpm5   sB   =
ÿ
û
ÿzMatrixCalculusMethods.expmc                 C   sL   d|   || j ¡|   || j  ¡  }t| | j¡ t¡ƒs$| | j¡}|S )aì  
        Gives the cosine of a square matrix `A`, defined in analogy
        with the matrix exponential.

        Examples::

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = True
            >>> X = eye(3)
            >>> cosm(X)
            [0.54030230586814               0.0               0.0]
            [             0.0  0.54030230586814               0.0]
            [             0.0               0.0  0.54030230586814]
            >>> X = hilbert(3)
            >>> cosm(X)
            [ 0.424403834569555  -0.316643413047167  -0.221474945949293]
            [-0.316643413047167   0.820646708837824  -0.127183694770039]
            [-0.221474945949293  -0.127183694770039   0.909236687217541]
            >>> X = matrix([[1+j,-2],[0,-j]])
            >>> cosm(X)
            [(0.833730025131149 - 0.988897705762865j)  (1.07485840848393 - 0.17192140544213j)]
            [                                     0.0               (1.54308063481524 + 0.0j)]
        r-   ©r7   r    ÚsumÚapplyÚimÚabsÚre©r
   r1   ÚBr   r   r   Úcosm“   ó   &zMatrixCalculusMethods.cosmc                 C   sL   d|   || j ¡|   || j  ¡  }t| | j¡ t¡ƒs$| | j¡}|S )aì  
        Gives the sine of a square matrix `A`, defined in analogy
        with the matrix exponential.

        Examples::

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = True
            >>> X = eye(3)
            >>> sinm(X)
            [0.841470984807897                0.0                0.0]
            [              0.0  0.841470984807897                0.0]
            [              0.0                0.0  0.841470984807897]
            >>> X = hilbert(3)
            >>> sinm(X)
            [0.711608512150994  0.339783913247439  0.220742837314741]
            [0.339783913247439  0.244113865695532  0.187231271174372]
            [0.220742837314741  0.187231271174372  0.155816730769635]
            >>> X = matrix([[1+j,-2],[0,-j]])
            >>> sinm(X)
            [(1.29845758141598 + 0.634963914784736j)  (-1.96751511930922 + 0.314700021761367j)]
            [                                    0.0                  (0.0 - 1.1752011936438j)]
        y       €      à¿r8   r>   r   r   r   Úsinm°   rA   zMatrixCalculusMethods.sinmc                 C   s$   | j d }|  || |¡|  |¡ S )Ng333333Ó?)r    ÚsqrtmÚsqrt)r
   r1   Ú_may_rotateÚur   r   r   Ú
_sqrtm_rotÍ   s   
z MatrixCalculusMethods._sqrtm_rotr   c                 C   s~  |   |¡}|d |kr|S | j}|r2|  |¡}t|  |¡ƒd| j k r2|  |¡dk r2|  ||d ¡S z‚|  jd7  _| jd }|}|d  }}d}		 |}
zd||  |¡  d||  |¡  }}W n t	yu   |rt|  ||d ¡}Y n<‚ w |  
||
 d¡}|  
|d¡}||| kr‹n%|r£|	dkr£||d	 k s£|  ||d ¡W || _S |	d7 }	|	| jkr¯| j‚qJW || _n|| _w |d9 }|S )
a  
        Computes a square root of the square matrix `A`, i.e. returns
        a matrix `B = A^{1/2}` such that `B^2 = A`. The square root
        of a matrix, if it exists, is not unique.

        **Examples**

        Square roots of some simple matrices::

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = True
            >>> sqrtm([[1,0], [0,1]])
            [1.0  0.0]
            [0.0  1.0]
            >>> sqrtm([[0,0], [0,0]])
            [0.0  0.0]
            [0.0  0.0]
            >>> sqrtm([[2,0],[0,1]])
            [1.4142135623731  0.0]
            [            0.0  1.0]
            >>> sqrtm([[1,1],[1,0]])
            [ (0.920442065259926 - 0.21728689675164j)  (0.568864481005783 + 0.351577584254143j)]
            [(0.568864481005783 + 0.351577584254143j)  (0.351577584254143 - 0.568864481005783j)]
            >>> sqrtm([[1,0],[0,1]])
            [1.0  0.0]
            [0.0  1.0]
            >>> sqrtm([[-1,0],[0,1]])
            [(0.0 - 1.0j)           0.0]
            [         0.0  (1.0 + 0.0j)]
            >>> sqrtm([[j,0],[0,j]])
            [(0.707106781186547 + 0.707106781186547j)                                       0.0]
            [                                     0.0  (0.707106781186547 + 0.707106781186547j)]

        A square root of a rotation matrix, giving the corresponding
        half-angle rotation matrix::

            >>> t1 = 0.75
            >>> t2 = t1 * 0.5
            >>> A1 = matrix([[cos(t1), -sin(t1)], [sin(t1), cos(t1)]])
            >>> A2 = matrix([[cos(t2), -sin(t2)], [sin(t2), cos(t2)]])
            >>> sqrtm(A1)
            [0.930507621912314  -0.366272529086048]
            [0.366272529086048   0.930507621912314]
            >>> A2
            [0.930507621912314  -0.366272529086048]
            [0.366272529086048   0.930507621912314]

        The identity `(A^2)^{1/2} = A` does not necessarily hold::

            >>> A = matrix([[4,1,4],[7,8,9],[10,2,11]])
            >>> sqrtm(A**2)
            [ 4.0  1.0   4.0]
            [ 7.0  8.0   9.0]
            [10.0  2.0  11.0]
            >>> sqrtm(A)**2
            [ 4.0  1.0   4.0]
            [ 7.0  8.0   9.0]
            [10.0  2.0  11.0]
            >>> A = matrix([[-4,1,4],[7,-8,9],[10,2,11]])
            >>> sqrtm(A**2)
            [  7.43715112194995  -0.324127569985474   1.8481718827526]
            [-0.251549715716942    9.32699765900402  2.48221180985147]
            [  4.11609388833616   0.775751877098258   13.017955697342]
            >>> chop(sqrtm(A)**2)
            [-4.0   1.0   4.0]
            [ 7.0  -8.0   9.0]
            [10.0   2.0  11.0]

        For some matrices, a square root does not exist::

            >>> sqrtm([[0,1], [0,0]])
            Traceback (most recent call last):
              ...
            ZeroDivisionError: matrix is numerically singular

        Two examples from the documentation for Matlab's ``sqrtm``::

            >>> mp.dps = 15; mp.pretty = True
            >>> sqrtm([[7,10],[15,22]])
            [1.56669890360128  1.74077655955698]
            [2.61116483933547  4.17786374293675]
            >>>
            >>> X = matrix(\
            ...   [[5,-4,1,0,0],
            ...   [-4,6,-4,1,0],
            ...   [1,-4,6,-4,1],
            ...   [0,1,-4,6,-4],
            ...   [0,0,1,-4,5]])
            >>> Y = matrix(\
            ...   [[2,-1,-0,-0,-0],
            ...   [-1,2,-1,0,-0],
            ...   [0,-1,2,-1,0],
            ...   [-0,0,-1,2,-1],
            ...   [-0,-0,-0,-1,2]])
            >>> mnorm(sqrtm(X) - Y)
            4.53155328326114e-19

        r/   é   r   r.   é€   r-   r   é   gü©ñÒMbP?)r0   r   Údetr<   r;   r   r=   rG   ÚinverseÚZeroDivisionErrorr   ÚNoConvergence)r
   r1   rE   r   Údr4   r6   ÚZÚIr'   ÚYprevÚmag1Úmag2r   r   r   rC   Ó   sN   
c
&
*ûü
î€zMatrixCalculusMethods.sqrtmc                 C   sø   |   |¡}| j}zg|  jd7  _| jd }|d }|}d}	 |  |¡}|d7 }|  || d¡dk r2nq||  }}|d }	d}
	 |
d@ rK|	||
 7 }	n|	||
 8 }	||9 }|  |d¡|k r^n|
d7 }
|
| jkrj| j‚q@W || _n|| _w |	d| 9 }	|	S )a   
        Computes a logarithm of the square matrix `A`, i.e. returns
        a matrix `B = \log(A)` such that `\exp(B) = A`. The logarithm
        of a matrix, if it exists, is not unique.

        **Examples**

        Logarithms of some simple matrices::

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = True
            >>> X = eye(3)
            >>> logm(X)
            [0.0  0.0  0.0]
            [0.0  0.0  0.0]
            [0.0  0.0  0.0]
            >>> logm(2*X)
            [0.693147180559945                0.0                0.0]
            [              0.0  0.693147180559945                0.0]
            [              0.0                0.0  0.693147180559945]
            >>> logm(expm(X))
            [1.0  0.0  0.0]
            [0.0  1.0  0.0]
            [0.0  0.0  1.0]

        A logarithm of a complex matrix::

            >>> X = matrix([[2+j, 1, 3], [1-j, 1-2*j, 1], [-4, -5, j]])
            >>> B = logm(X)
            >>> nprint(B)
            [ (0.808757 + 0.107759j)    (2.20752 + 0.202762j)   (1.07376 - 0.773874j)]
            [ (0.905709 - 0.107795j)  (0.0287395 - 0.824993j)  (0.111619 + 0.514272j)]
            [(-0.930151 + 0.399512j)   (-2.06266 - 0.674397j)  (0.791552 + 0.519839j)]
            >>> chop(expm(B))
            [(2.0 + 1.0j)           1.0           3.0]
            [(1.0 - 1.0j)  (1.0 - 2.0j)           1.0]
            [        -4.0          -5.0  (0.0 + 1.0j)]

        A matrix `X` close to the identity matrix, for which
        `\log(\exp(X)) = \exp(\log(X)) = X` holds::

            >>> X = eye(3) + hilbert(3)/4
            >>> X
            [              1.25             0.125  0.0833333333333333]
            [             0.125  1.08333333333333              0.0625]
            [0.0833333333333333            0.0625                1.05]
            >>> logm(expm(X))
            [              1.25             0.125  0.0833333333333333]
            [             0.125  1.08333333333333              0.0625]
            [0.0833333333333333            0.0625                1.05]
            >>> expm(logm(X))
            [              1.25             0.125  0.0833333333333333]
            [             0.125  1.08333333333333              0.0625]
            [0.0833333333333333            0.0625                1.05]

        A logarithm of a rotation matrix, giving back the angle of
        the rotation::

            >>> t = 3.7
            >>> A = matrix([[cos(t),sin(t)],[-sin(t),cos(t)]])
            >>> chop(logm(A))
            [             0.0  -2.58318530717959]
            [2.58318530717959                0.0]
            >>> (2*pi-t)
            2.58318530717959

        For some matrices, a logarithm does not exist::

            >>> logm([[1,0], [0,0]])
            Traceback (most recent call last):
              ...
            ZeroDivisionError: matrix is numerically singular

        Logarithm of a matrix with large entries::

            >>> logm(hilbert(3) * 10**20).apply(re)
            [ 45.5597513593433  1.27721006042799  0.317662687717978]
            [ 1.27721006042799  42.5222778973542   2.24003708791604]
            [0.317662687717978  2.24003708791604    42.395212822267]

        r.   rI   r/   r   r   g      À?r   )r0   r   r   rC   r   rN   )r
   r1   r   r4   rQ   r?   Únr5   ÚXÚLr'   r   r   r   Úlogm^  s@   
R

ü
özMatrixCalculusMethods.logmc                 C   sž   |   |¡}|  |¡}| j}z7|  jd7  _|  |¡r!|t|ƒ }n|  |d ¡r6t|d ƒ}|  |¡| }n
|  ||  |¡ ¡}W || _n|| _w |d9 }|S )aF  
        Computes `A^r = \exp(A \log r)` for a matrix `A` and complex
        number `r`.

        **Examples**

        Powers and inverse powers of a matrix::

            >>> from mpmath import *
            >>> mp.dps = 15; mp.pretty = True
            >>> A = matrix([[4,1,4],[7,8,9],[10,2,11]])
            >>> powm(A, 2)
            [ 63.0  20.0   69.0]
            [174.0  89.0  199.0]
            [164.0  48.0  179.0]
            >>> chop(powm(powm(A, 4), 1/4.))
            [ 4.0  1.0   4.0]
            [ 7.0  8.0   9.0]
            [10.0  2.0  11.0]
            >>> powm(extraprec(20)(powm)(A, -4), -1/4.)
            [ 4.0  1.0   4.0]
            [ 7.0  8.0   9.0]
            [10.0  2.0  11.0]
            >>> chop(powm(powm(A, 1+0.5j), 1/(1+0.5j)))
            [ 4.0  1.0   4.0]
            [ 7.0  8.0   9.0]
            [10.0  2.0  11.0]
            >>> powm(extraprec(5)(powm)(A, -1.5), -1/(1.5))
            [ 4.0  1.0   4.0]
            [ 7.0  8.0   9.0]
            [10.0  2.0  11.0]

        A Fibonacci-generating matrix::

            >>> powm([[1,1],[1,0]], 10)
            [89.0  55.0]
            [55.0  34.0]
            >>> fib(10)
            55.0
            >>> powm([[1,1],[1,0]], 6.5)
            [(16.5166626964253 - 0.0121089837381789j)  (10.2078589271083 + 0.0195927472575932j)]
            [(10.2078589271083 + 0.0195927472575932j)  (6.30880376931698 - 0.0317017309957721j)]
            >>> (phi**6.5 - (1-phi)**6.5)/sqrt(5)
            (10.2078589271083 - 0.0195927472575932j)
            >>> powm([[1,1],[1,0]], 6.2)
            [ (14.3076953002666 - 0.008222855781077j)  (8.81733464837593 + 0.0133048601383712j)]
            [(8.81733464837593 + 0.0133048601383712j)  (5.49036065189071 - 0.0215277159194482j)]
            >>> (phi**6.2 - (1-phi)**6.2)/sqrt(5)
            (8.81733464837593 - 0.0133048601383712j)

        r.   r   r   )r0   Úconvertr   Úisintr   rC   r7   rX   )r
   r1   Úrr   ÚvÚyr   r   r   ÚpowmÐ  s   
4

€zMatrixCalculusMethods.powmN)r+   )r   )Ú__name__Ú
__module__Ú__qualname__r*   r7   r@   rB   rG   rC   rX   r^   r   r   r   r   r      s    
.^
 rr   N)Úlibmp.backendr   Úobjectr   r   r   r   r   Ú<module>   s    