o
    lhx                     @   sR  d Z ddlmZmZ dd Zdd Z		d4dd	Zd
d Zdd Zdd Z	dZ
dd Zdd Zdd Zed5ddZdd Zdd Zdd  Zed!d" Zed#d$ Z	 g d%d&gd'd(d)gd'd*d+gd,d-d.gd'd/d0gd'd1d2gd'd3d4gd'd5d6gd'd7d8gd,d9d:gd'd;d<gd,d=d>gd,d?d@gd'dAdBgdCdDdEgd,dFdGgd'dHdIgd,dJdKgd,dLdMgd'dNdOgd,dPdQgd'dRdSgd'dTdUgd,dVdWgd'dXdYgd'dZd[gd,d\d]gd'd^d_gd'd`dagd,dbdcgd'dddegd,dfdggd'dhdigd,djdkgd'dldmgd'dndogd,dpdqgd,drdsgd,dtdugd,dvdwgd'dxdygd'dzd{gd,d|d}gd,d~dgd,ddgd,ddgd,ddgd'ddgd,ddgd'ddgd'ddgd'ddgd,ddgd,ddgd'ddgd,ddgd'ddgd'ddgd,ddgd,ddgd,ddgd'ddgd,ddgd'ddgd'ddgd,ddgd,ddgd'ddgd'ddgd,ddgdCddgd,ddgd'ddgd'ddgd'ddgd'ddgd,ddgd,ddgd'ddgd,ddgd'ddgd'ddgd'ddgd'ddgd,ddgd,ddgd,ddgd'ddgd,ddgd'ddgdܑddgd,ddgd,ddgd,ddgdddgd'ddgdܑddgd'ddgd'ddgd,ddgd,ddgd'ddgd,ddgd'ddgd'ddgd'ddgd,ddgd,d dgdddgd,ddgd,ddgd,dd	gd'd
dgd'ddgd,ddgd,ddgdddgd,ddgd'ddgd,ddgd,ddgd'ddgd'dd gd'd!d"gd'd#d$gd,d%d&gd,d'd(gd,d)d*gd,d+d,gd'd-d.gd'd/d0gd,d1d2gd'd3d4gd,d5d6gd'd7d8gd'd9d:gd'd;d<gd,d=d>gd'd?d@gdܑdAdBgd'dCdDgd'dEdFgd,dGdHgd'dIdJgd'dKdLgd'dMdNgd,dOdPgd,dQdRgd'dSdTgd,dUdVgd,dWdXgd'dYdZgd'd[d\gd,d]d^gd_d`dagd'dbdcgd,dddegdfdgdhgd'didjgd'dkdlgd,dmdngd,dodpgd'dqdrgd'dsdtgd,dudvgd'dwdxgd'dydzgd'd{d|gd,d}d~gd'ddgd'ddgd,ddgd,ddgd'ddgd,ddgd'ddgd'ddgdܑddgd,ddgd'ddgd,ddgdfddgd'ddgd,ddgd'ddgd,ddgd,ddgd'ddgd,ddgd'ddgd'ddgd,ddgd,ddgd'ddgd,ddgd'ddgd,ddgd,ddgd,ddgd'ddgdddgd,ddgd,ddgd,dÐdgd,dŐdgd,dǐdgd'dɐdgd,dːdgd,d͐dgd'dϐdgd,dѐdgd,dӐdgd'dՐdgd,dאdgd,dِdgd'dېdgd,dݐdgd,dߐdgd,ddgd'ddgd'ddgd,ddgd,ddgd,ddgdddgd,ddgd,ddgd,ddgd,ddgd,ddgd'ddgd,ddgd,ddgd,dd gd,ddgd'ddgd'ddgd'ddgd,d	d
gd,ddgdddgd'ddgd,ddgd,ddgd,ddgd,ddgd,ddgd'ddgd,ddgd,dd gd'd!d"gd,d#d$gd'd%d&gdCd'd(gd,d)d*gd,d+d,gd'd-d.gd,d/d0gd,d1d2gd,d3d4gdfd5d6gd,d7d8gd'd9d:gd,d;d<gd,d=d>gd'd?d@gd'dAdBgd'dCdDgd,dEdFgd,dGdHgd,dIdJgd'dKdLgd,dMdNgd'dOdPgd'dQdRgd,dSdTgd'dUdVgd'dWdXgd'dYdZgd'd[d\gd'd]d^gdd_d`gd,dadbgd,dcddgd,dedfgd,dgdhgd'didjgd'dkdlgd,dmdngd,dodpgd'dqdrgd'dsdtgd,dudvgd,dwdxgd,dydzgd,d{d|gd,d}d~gd,ddgd'ddgd,ddgd'ddgd,ddgd,ddgd,ddgd,ddgd'ddgd,ddgd'ddgd'ddgdCddgd,ddgd'ddgd,ddgd'ddgd,ddgd,ddgd,ddgd'ddgd,ddgdfddgd'ddgd'ddgd,ddgd'ddgd'ddgd,ddgd,ddgdddgd'ddgd'ddgd,ddgd,dĐdgddƐdgd'dȐdgd'dʐdgd,d̐dgd,dΐdgd,dАdgd'dҐdgd'dԐdgd,d֐dgd,dؐdgd'dڐdgd,dܐdgd,dސdgdfddgd,ddgd,ddgd'ddgdܑddgd,ddgd'ddgd,ddgd,ddgdܑddgd'ddgd,ddgd,ddgd'ddgdddgd,ddgd,d dgd,ddgdddgd'ddgd,dd	gd,d
dgd'ddgd'ddgd'ddgd,ddgd,ddgd,ddgd,ddgd,ddgdddgdddgddd gd!d"d#gdd$d%gdd&d'gd(d)d*gdd+d,gd-d.d/gdd0d1gd(d2d3gd-ZdS (6  a  
The function zetazero(n) computes the n-th nontrivial zero of zeta(s).

The general strategy is to locate a block of Gram intervals B where we
know exactly the number of zeros contained and which of those zeros
is that which we search.

If n <= 400 000 000  we know exactly the Rosser exceptions, contained
in a list in this file. Hence for n<=400 000 000 we simply
look at these list of exceptions. If our zero is implicated in one of
these exceptions we have our block B.  In other case we simply locate
the good Rosser block containing our zero.

For n > 400 000 000 we apply the method of Turing, as complemented by
Lehman, Brent and Trudgian  to find a suitable B.
   )defundefun_wrappedc                 C   s  t ttd D ]T}td|  d }td|  d }||d kr\|d |kr\| |}| |}| j|}| j|}|| d }	|| }
td| d  }|	||g||g||gf  S q|d }t| |\}}}|g}|g}|dk r|d8 }t| |\}}}|d| |d| |dk ss|| d }	|d }t| |\}}}|| || |dk r|d7 }t| |\}}}|| || |dk s|	||g||fS )z;for n<400 000 000 determines a block were one find our zero       r   )	rangelen_ROSSER_EXCEPTIONS	grampoint_fpsiegelzcompute_triple_tvbinsertappend)ctxnkabt0t1v0v1my_zero_numberzero_number_blockpatterntvTVm r    n/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/mpmath/functions/zetazeros.pyfind_rosser_block_zero   sF   





r"   c                 C   s,   d}| dkrd}| dkrd}| dkrd}|S )z(Precision needed to compute higher zeros5   i ?   l    h] F       @ k S   r    )r   wpr    r    r!   wpzeros7   s   r)   Nc                    s  |du r j }d}t|}||k r>||k r>|d }|d }	|g}
|	g}d}tdt|D ]s}|| }|| }||	 dkrP ||	 }|| | |d  }n|| d }|dk rl j|}t||k rk |}n |}|	| dk r{|d7 }|
| || || }|| dk r|d7 }|
| || |}|}	q.|
}|}|d7 }|t	kr1|dkr1|d |kr1d}d}d}tdt|D ]!}|| ||d   }||kr|}|}|}q||k r||kr|}q|d| kr1 fdd}||d  }|| } j
|||fd	d
d
d} |}	||k r1||k r1|	||  dk r1||| |||	 t|}||k r>||k s||krFd}nd
}|||fS )z^Separate the zeros contained in the block T, limitloop
    determines how long one must searchNr   r   r   
      c                    s    j | ddS )Nr   
derivative)rs_zxr   r    r!   <lambda>y   s    z)separate_zeros_in_block.<locals>.<lambda>illinoisF)solververifyverboseT)infcount_variationsr   r   sqrtr
   r   absr   ITERATION_LIMITfindrootr   )r   r   r   r   	limitloopfp_tolerance
loopnumber
variationsr   r   newTnewVr   b2ualphar   wdtMaxdtSeckMaxk1dtfr   r   r   	separatedr    r1   r!   separate_zeros_in_blockB   s   





"
&
8
rN   c                    sp  d}|d }t dt|D ]}|| }	||	 dk r'|d7 }||kr'|}
|}|	}|	}q||
 }||
d  }| _t| | }d | } jd g}d}|d d| krr|d7 }|d d d d|  g| }|d d| ksW|d |  _ j fdd||fdd	d
} d|}|dd D ]}||  _| | j|dd  } d 	|}q 	|S )zPIf we know which zero of this block is mine,
    the function separates the zeror   r      r   r+   c                    s
     | S )Nr   r/   r1   r    r!   r2      s   
 z"separate_my_zero.<locals>.<lambda>r3   F)r4   r6         ?Nr,   )
r   r   precr)   logmagr<   mpczetaim)r   r   r   r   r   rR   r@   r   r   r   k0leftvrightvr   r   wpzguardprecsindexrzznewr    r1   r!   separate_my_zero   s<   

rb   c                 C   sj   |dk rdS |  |d }| j|}d|d  d|  }d|d  d|  }| t||}t|}|S )a  The number of good Rosser blocks needed to apply
    Turing method
    References:
    R. P. Brent, On the Zeros of the Riemann Zeta Function
    in the Critical Strip, Math. Comp. 33 (1979) 1361--1372
    T. Trudgian, Improvements to Turing Method, Math. Comp.i r   d   gHPx?g{Gz?ga+ei?g)\(?)r	   r
   lnceilminint)r   r   glgbrenttrudgianNr    r    r!   sure_number_block   s   rm   c                 C   sR   |  |}| j|}| t|| |d k r| |}|d|  }|||fS )N-   )r	   r
   r   rT   r:   )r   r   r   r   r   r    r    r!   r      s   


r   rO   c           &      C   sH  t | |}d}|d }t| |\}}}|g}	|g}
|dk r7|d7 }t| |\}}}|	| |
| |dk s|g}|g}|g}|d| k r|d7 }t| |\}}}|| || |dk rz|d7 }t| |\}}}|| || |dk s`|| t|d }t| |||t|d\}}}|	  |	| |
  |
| |r|d7 }nd}|g}|g}|d| k sFd}|d }t| |\}}}|	d| |
d| |dk r|d8 }t| |\}}}|	d| |
d| |dk s|d| |g}|g}|d| k r|d8 }t| |\}}}|d| |d| |dk r@|d8 }t| |\}}}|d| |d| |dk s#|d| t|d }t| |||t|d\}}}|  ||	 }	|  ||
 }
|rq|d7 }nd}|g}|g}|d| k s|d|  }t|}||d|  d  }t| |\}}}|		|}t| |\}}}|		|}|	||d  }|
||d  }|| }t| |||t|d\}}}|r|| d ||g||fS || }t|}||| d  }t| |\}}} |		|}!t| |\}"}#}$|		|"}%|	|!|%d  }|
|!|%d  }|| d ||g||fS )zTo use for n>400 000 000r   r   r   r=   r>   )
rm   r   r   r   rN   r;   popextendr   r^   )&r   r   r>   sbnumber_goodblocksm2r   r   r   TfVf
goodpointsr   r   znABrM   r_   ri   strvrbrartsvsbsas1qtqvqbqaqttvtbtatr    r    r!   search_supergood_block   s   

















r   c                 C   sD   d}| d }t dt| D ]}| | }|| dk r|d7 }|}q|S Nr   r   )r   r   )r   countvoldr   vnewr    r    r!   r8   2  s   r8   c                 C   s   d}|d }|d }t | |\}}}	d}
d}t|d |d D ]S}t | |\}}}t|}|
|k rE||
 |krE|
d7 }
|
|k rE||
 |ks7|||
 }|| |d| t|}|d|  }|dkrh|d }|
}|||}}}	q|d d }|S )N(r   r   z%sz)(ro   )r   r   r   r   r   r8   )r   blockr   r   r   r   r   r   r   b0r   rX   r   r   r   b1lgTLr   r    r    r!   pattern_construct<  s.   
r   FTc                 C   s  t |}|dk r| |  S |dkrtd| j}zZt| |\}}|| _|dk r4t| |\}}}	}
n
t| ||\}}}	}
|d |d  }t| ||	|
| j	|d\}	}
}|r]t
| ||	|
}t||}t| |||	|
|}| d|}W || _n|| _w |r|
 }|r||||fS |S )a  
    Computes the `n`-th nontrivial zero of `\zeta(s)` on the critical line,
    i.e. returns an approximation of the `n`-th largest complex number
    `s = \frac{1}{2} + ti` for which `\zeta(s) = 0`. Equivalently, the
    imaginary part `t` is a zero of the Z-function (:func:`~mpmath.siegelz`).

    **Examples**

    The first few zeros::

        >>> from mpmath import *
        >>> mp.dps = 25; mp.pretty = True
        >>> zetazero(1)
        (0.5 + 14.13472514173469379045725j)
        >>> zetazero(2)
        (0.5 + 21.02203963877155499262848j)
        >>> zetazero(20)
        (0.5 + 77.14484006887480537268266j)

    Verifying that the values are zeros::

        >>> for n in range(1,5):
        ...     s = zetazero(n)
        ...     chop(zeta(s)), chop(siegelz(s.imag))
        ...
        (0.0, 0.0)
        (0.0, 0.0)
        (0.0, 0.0)
        (0.0, 0.0)

    Negative indices give the conjugate zeros (`n = 0` is undefined)::

        >>> zetazero(-1)
        (0.5 - 14.13472514173469379045725j)

    :func:`~mpmath.zetazero` supports arbitrarily large `n` and arbitrary precision::

        >>> mp.dps = 15
        >>> zetazero(1234567)
        (0.5 + 727690.906948208j)
        >>> mp.dps = 50
        >>> zetazero(1234567)
        (0.5 + 727690.9069482075392389420041147142092708393819935j)
        >>> chop(zeta(_)/_)
        0.0

    with *info=True*, :func:`~mpmath.zetazero` gives additional information::

        >>> mp.dps = 15
        >>> zetazero(542964976,info=True)
        ((0.5 + 209039046.578535j), [542964969, 542964978], 6, '(013111110)')

    This means that the zero is between Gram points 542964969 and 542964978;
    it is the 6-th zero between them. Finally (01311110) is the pattern
    of zeros in this interval. The numbers indicate the number of zeros
    in each Gram interval (Rosser blocks between parenthesis). In this case
    there is only one Rosser block of length nine.
    r   zn must be nonzero r   rp   rQ   )rg   zetazero	conjugate
ValueErrorrR   comp_fp_tolerancer"   r   rN   r7   r   maxrb   rU   )r   r   inforound	wpinitialr[   r>   r   r   r   r   r   rM   r   rR   r   r   r    r    r!   r   T  s:   <



r   c                 C   s\   |dkrd|  |d }nd}| j}z|  j|7  _t| || j }W || _|S || _w )Nl     a$r+   r*   r   )rS   rR   rg   siegelthetapi)r   r   r(   rR   hr    r    r!   
gram_index  s   r   c                 C   s   d}|d }|d }|d }d}||k r0|| }	||	 dk r"|d7 }|	}|d7 }|| }||k s|  |}
|
| dk r?|d7 }|S r   rP   )r   r   r   r   r   r   toldtnewr   r   r   r    r    r!   count_to  s"   
r   c                 C   sF   t || | }|dk rd}||fS |dkrd}||fS d}||fS )Ni /hYgMb@?r&   g?rc   )r)   rS   )r   r   r[   r>   r    r    r!   r     s   r   c                 C   s8  |dk rdS t | |}t| |}| j}t| |\}}|| _| |}|dkr.|dk r.dS |dkr8|dkr8dS |d dk rFt| |d }nt| |d |}|d \}	}
|
|	 dkrt|d d }|| dkrm|| _|d S || _|d S |\}}}}|
|	 }t| |||| j	|d\}}}t
| |||}|| _||	 d S )	a  
    Computes the number of zeros of the Riemann zeta function in
    `(0,1) \times (0,t]`, usually denoted by `N(t)`.

    **Examples**

    The first zero has imaginary part between 14 and 15::

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>> nzeros(14)
        0
        >>> nzeros(15)
        1
        >>> zetazero(1)
        (0.5 + 14.1347251417347j)

    Some closely spaced zeros::

        >>> nzeros(10**7)
        21136125
        >>> zetazero(21136125)
        (0.5 + 9999999.32718175j)
        >>> zetazero(21136126)
        (0.5 + 10000000.2400236j)
        >>> nzeros(545439823.215)
        1500000001
        >>> zetazero(1500000001)
        (0.5 + 545439823.201985j)
        >>> zetazero(1500000002)
        (0.5 + 545439823.325697j)

    This confirms the data given by J. van de Lune,
    H. J. J. te Riele and D. T. Winter in 1986.
    g%fD,@r   ro   r   r   r   r+   rp   )r   rg   floorrR   r   r   r"   r   rN   r7   r   )r   r   r0   r   r   r[   r>   r   Rblockn1n2r   r   r   r   r   r   rM   r   r    r    r!   nzeros  sB   %

r   c                 C   s   |  |d | || j  S )aw  
    Computes the function
    `S(t) = \operatorname{arg} \zeta(\frac{1}{2} + it) / \pi`.

    See Titchmarsh Section 9.3 for details of the definition.

    **Examples**

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>> backlunds(217.3)
        0.16302205431184

    Generally, the value is a small number. At Gram points it is an integer,
    frequently equal to 0::

        >>> chop(backlunds(grampoint(200)))
        0.0
        >>> backlunds(extraprec(10)(grampoint)(211))
        1.0
        >>> backlunds(extraprec(10)(grampoint)(232))
        -1.0

    The number of zeros of the Riemann zeta function up to height `t`
    satisfies `N(t) = \theta(t)/\pi + 1 + S(t)` (see :func:nzeros` and
    :func:`siegeltheta`)::

        >>> t = 1234.55
        >>> nzeros(t)
        842
        >>> siegeltheta(t)/pi+1+backlunds(t)
        842.0

    r   )r   r   r   )r   r   r    r    r!   	backlunds!  s   $r   i i z(00)3iaidiiz3(00)i=i=ioioiKiNi'i'iDiDi5i5i"i"i͜JiМJi+di.diOeiRei6٧i:٧z(00)40i(i(iR4yiU4yiýiýieieiii2 i5 i^RiaRi(i(iL=iO=iGi"Givi"viiiii	Ui	Ui_i_ieieihihi$.i'.i;i;iii~)i~)i<i
<i@i@iZDi]DipNisNibibi(i(iiivxiyxiiikini7/i:/i(7i(7ioEirEiOeIiReIipipi5i5iiiEŵiHŵi:i=i#i&i	i	i.	i1	i	iÁ	i&&	i)&	iĺ?	iǺ?	iϴB	iҴB	i_	i_	i_	i_	i&g	i&g	itqo	iwqo	i		i		ic	if	i=	i=	iv	iv	i	i	id	ig	iL
	iO
	i;
i;
i0
i0
iS'
iV'
i,
i,
i@
i@
i1T
i1T
i[
i[
i`
i`
i`c
i`c
if
if
i!y
i!y
iՊ
iՊ
i
i
i
i
iWC
iZC
i>h
iAh
i[b
i^b
i
i
z22(00)iǂ
iʂ
it4diw4dididififz(00)22iyiyiiiךiךi׬i׬isisiii
i
iZi]ititiii!i!i{i{i"i%iyiyi{i~iiiii=&i=&i|Ei|EiwLizLiYiYioYirYi]i]z3(010)i$`i'`ififiˁgi΁gib|ie|i`i`i3i6iii߀ii(>i+>iOiRiiiiÀiii
i
ie
ih
ijimi.Wi1Wi0`i3`i)T/i,T/i	SiSiXiXi]Yi`Yi<Ngi@Ngimimiii*i-iwiwi_ibi٤i٤iii=gi@gi#i#iii`~ic~ib
ie
i?iBi<i?i7(i7(z04(00)i//Ni2/Niz|Qi}|QiNciNcz(010)3i˾eiξeihihiDhiGhihʇikʇiiiiiiiiiliЦiЦiS;iV;i ii%i(iii-i0i'i*i55i55iZ7iZ7i"Mi"Mi`i`iSgiWgiti ti?iBiviviii"Ai%Aikiki#i&iiiii0i0i[i^iXi[iR%iR%iO'iR'iz7i}7iaI?idI?i!Wi$WiKYiNYihihi}li}lioqirqihrikriyiyiiiii(i(i$
i'
im(ip(i[i^iѓiԓiqxitxi@QiCQiSiSiCiFie,ih,iw)iz)iߥii8i;iiiiiiic!if!i'i'i(i(i:6i:6iJiJiOiOi]^i`^iqsitsiexihxi&|i)|i"i"ibibiiiiiAiDiiiaiaiiiii i i1!i1!iʺ*iκ*iP2iS2i.Ii.Ii;Mi;MiSiSididijnimniiiɭi̭iIiLiii !i!iڜiڜikiki*i*iiiiiiili'Di*Diii~ii)i,iFiIiK\iN\izB-i}B-i*Vi*VimimixixiPyiSyi׸iڸi$Îi'Îiĩiǩiϐiϐiiiiimipi5i5i%i%i>KiAKi{~i~~iViYiHiHiii*i*iiiii3i6iiiiiY#iY#i#i#i$i$iNgiQgidligliůiůipipi\i\i׊iڊiNiQiiiiiAiAi	.i.i2i2ipipiii i iii'*i**iZ35i^35i<7i<7i'=i*=iAiAiEiEiEiEiPUiPUi{Xi{Xi fifiiiniri1i1i @i@iii?i?iiiii*i-i$i$z04(010)i9i<i i iImiLmisisiІ4iԆ4iZ6i]6i;i;iBiBicici
vi
vidzidzi}i}i8i8i5i5ixi{iʯiʯiGSiJSiiiQNiTNipipiiizi~iii6i6i} i} iViVi/i/iMo%iPo%i*i*i-i-iA@iA@iNAiRAiGCiJCizXizXi'\i*\i\i\i'li'li1li4lifrifriTKxiWKxi|i|i꣗iiљiљiiiiiii2ji5jiۣii	]i]z032(00)i΄c,iӄc,z(010)40iӹ,iӹ,i9i9i%:i%:z(00)410iw;iw;it?it?z(00)230iqHivHi}Ji}JiQiQ)NN)FT)__doc__	functionsr   r   r"   r)   rN   rb   rm   r   r;   r   r8   r   r   r   r   r   r   r   r   r    r    r    r!   <module>   s   #F%
h
[

G
&/		

  !!""##$$%%&&''(())**++,,--..//00112233445566778899::;;<<==>>??@@AABBCCDDEEFFGGHHIIJJKKLLMMNNOOPPQQRRSSTTUUVVWWXXYYZZ[[\\]]^^__``aabbccddeeffgghhiijj
kk
ll
mm
nn
oo
pp
qq
rr
ss
tt
uu
vv
ww
xx
yy
zz
{{
||
}}
~~
 
    
    
    
    
    
    
    
    
	  	  

  
  
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
      
!  !  
"  "  
#  #  
$  $  
%  %  
&  &  
'  '  
(  (  
)  )  
*  *  
+  +  
,  ,  
-  -  
.  .  
/  /  
0  0  
1  1  
2  2  
3  3  
4  4  
5  5  
6  6  
7  7  
8  8  
9  9  
:  :  
;  ;  
<  <  
=  =  
>  >  
?  ?  
@  @  
A  A  
B  B  
C  C  
D  D  
E  E  
F  F  
G  G  
H  H  
I  I  
J  J  
K  K  
L  L  
M  M  
N  N  
O  O  
P  P  
Q  Q  
R  R  
S  S  
T  T  
U  U  
V  V  
W  W  
X  X  
Y  Y  
Z  Z  
[  [  
\  \  
]  ]  
^  ^  
_  _  
`  `  
a  a  
b  b  
c  c  
d  d  
e  e  
f  f  
g  g  
h  h  
i  i  
j  j  
k  k  
l  l  
m  m  
n  n  
o  o  
p  p  
q  q  
r  r  
s  s  
t  t  
u  u  
v  v  
w  w  
x  x  
y  y  
z  z  
{  {  
|  |  
}  }  
~  ~  
     
        
        
        
        
        
        
        
        
	    	    

    
    
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
        
          
!    !    
"    "    
#    #    
$    $    
%    %    
&    &    
'    '    
(    (    
)    )    
*    *    
+    +    
,    ,    
-    -    
.    .    
/    /    
0    0    
1    1    
2    2    
3    3    
4    4    
5    5    
6    6    
7    7    
8    8    
9    9    
:    :    
;    ;    
<    <    
=    =    
>    >    
?    ?    
@    @    
A    A    
B    B    
C    C    
D    D    
E    E    
F    F    
G    G    
H    H    
I    I    
J    J    
K    K    
L    L    
M    M    
N    N    
O    O    
P    P    
Q    Q    
R    R    
S    S    
T    T    
U    U    
V    V    
W    W    
X    X    
Y    Y    
Z    Z    
[    [    
\    \    
]    ]    
^    ^    
_    _    
`    `    
a    a    
b    b    
c    c    
d    d    
e    e    
f    f    
g    g    
h    h    
i    i    
j    j    
k    k    
l    l    
m    m    
n    n    
o    o    
p    p    
q    q    
r    r    
s    s    
t    t    
u    u    
v    v    
w    w    
y    y    
z    z    
{    {    
|    |    
}    }    
~    ~    
         
            
            
            
            
         