o
    Uh/\                    @   s  d dl Z d dlZd dlmZmZmZmZ d dlmZ d dl	m
Z
 d dlmZmZmZmZ d dlmZmZ d dlmZmZmZmZmZmZmZmZmZmZmZmZm Z m!Z! d dl m"Z"m#Z#m$Z$m%Z%m&Z&m'Z'm(Z(m)Z)m*Z*m+Z+ d d	l,m-Z-m.Z. d d
l/m/Z/m0Z0m1Z1m2Z2 d dl3m4Z4m5Z5m6Z6m7Z7m8Z8 d dl9m:Z:m;Z; d dl<m=Z= ddl>m?Z?m@Z@mAZAmBZBmCZCmDZDmEZEmFZFmGZGmHZHmIZImJZJ g dZKzd dl mLZM W n eNy   deOfddZPdd ZQdd ZMY nw dddZRe?fddZSe?fddZTe?fd d!ZUG d"d# d#ZVd$d% ZWd&d' ZXd(d) ZYd*d+ ZZdd,d-Z[d.d/ Z\dd0d1Z]dd2d3Z^dd4d5Z_d6d7 Z`dd8d9Zad:d; Zbdd<d=ZcG d>d? d?Zddd@dAZedBdC ZfdDdE ZgddFdGZhddHdIZiddJdKZjddLdMZkddOdPZlddQdRZmddSdTZnddUdVZodWdX ZpddYdZZqdd\d]Zrdd^d_Zsd`da ZtddcddZudedf ZvdddgdhdiZw	ddkdlZxdmdn Zydodp Zze{e|ffdqdrZ}ddsdtZ~ddudvZG dwdx dxejejZddydzZd{d| Zedfd}d~Zdd Zdd Zdd Zdd ZG dd dZdd Zdd Zdd fddZe6fddddZG dd deZG dd dZG dd dZefddZdddZdjddZdddZedfddZdddZdd ZdddZG dd dZdddZdd Zdd Zdd Zdd Zdd Zdd Zdd fddZdd Zdd Zdd ZddddÜddńZdddǄZG ddɄ deZG dd˄ d˃Zdd̈́ ZdddτZddф Zddӄ ZddՄ Zddׄ Zddل Zddۄ Zdd݄ Zdd߄ ZG dd dZdd Ze{e|fddddZdddZdddZdddZdddZde?dddZdedfddZdd Zdd Zdd Zdd Zdd Zdd  ZĐdd ZŐdd ZƐdd Zǐdd ZȐd	d
 Zɐdd Zʐdd Zːdd ZdS (      N)Counterdefaultdictdequeabc)Sequence)suppress)cached_propertypartialreducewraps)heapifyheapreplace)chaincombinationscompresscountcycle	dropwhilegroupbyislicerepeatstarmap	takewhileteezip_longestproduct)
combeexp	factorialfloorfsumloglog1ppermtau)EmptyQueue)random	randrangeshuffleuniform)
itemgettermulsubgtlt)
hexversionmaxsize)	monotonic   )_marker
_zip_equalUnequalIterablesErrorconsumeflattennthpowersetsievetakeunique_everseen	all_equalbatched)oAbortThreadSequenceViewr7   adjacent
all_uniquealways_iterablealways_reversiblebucketcallback_iterchunkedchunked_evencircular_shiftscollapsecombination_index"combination_with_replacement_indexconsecutive_groupsconstrained_batchesconsumercount_cycle	countabledft
differencedistinct_combinationsdistinct_permutations
distributedividedoublestarmapduplicates_everseenduplicates_justseenclassify_unique	exactly_nfilter_except
filter_mapfirstgray_productgroupby_transformichunkediequalsidftilen
interleaveinterleave_evenlyinterleave_longestintersperse	is_sortedislice_extendediterateiter_suppressjoin_mappingslastlocatelongest_common_prefixlstripmake_decorator
map_exceptmap_if
map_reduce	mark_endsminmaxnth_or_lastnth_permutation	nth_primenth_product nth_combination_with_replacementnumeric_rangeoneonlyouter_productpaddedpartial_product
partitionspeekablepermutation_indexpowerset_of_setsproduct_indexraise_repeat_eachrepeat_lastreplacerlocaterstrip
run_lengthsampleseekableset_partitionsside_effectslicedsort_togethersplit_aftersplit_atsplit_before
split_into
split_whenspystaggerstrip
strictly_n
substringssubstrings_indexestakewhile_inclusivetime_limitedunique_in_windowunique_to_eachunzipvalue_chainwindowedwindowed_complete	with_iterzip_broadcast	zip_equal
zip_offset)sumprodxc                 C   s$   | d }|||   }| | }||fS )z1Split a float into two half-precision components.g     A )r   thilor   r   g/var/www/html/construction_image-detection-poc/venv/lib/python3.10/site-packages/more_itertools/more.pydl_split   s   r   c           
      C   sT   t | \}}t |\}}|| }|| ||  }|| }|| | ||  }	||	fS )zLossless multiplication.)r   )
r   yxx_hixx_loyy_hiyy_lopqzzzr   r   r   dl_mul   s   r   c                 C   s   t ttt| |S N)r!   r   from_iterablemapr   )r   r   r   r   r   	_fsumprod      r   Fc                    sF   t ttt | g  |r!du rtd fdd}t | S  S )aJ  Break *iterable* into lists of length *n*:

        >>> list(chunked([1, 2, 3, 4, 5, 6], 3))
        [[1, 2, 3], [4, 5, 6]]

    By the default, the last yielded list will have fewer than *n* elements
    if the length of *iterable* is not divisible by *n*:

        >>> list(chunked([1, 2, 3, 4, 5, 6, 7, 8], 3))
        [[1, 2, 3], [4, 5, 6], [7, 8]]

    To use a fill-in value instead, see the :func:`grouper` recipe.

    If the length of *iterable* is not divisible by *n* and *strict* is
    ``True``, then ``ValueError`` will be raised before the last
    list is yielded.

    Nz*n must not be None when using strict mode.c                  3   *     D ]} t | krtd| V  qd S )Nziterable is not divisible by n.len
ValueError)chunkiteratornr   r   ret      zchunked.<locals>.ret)iterr	   r=   r   )iterabler   strictr   r   r   r   rI      s   
rI   c                 C   s$   | D ]}|  S |t u rtd|S )a  Return the first item of *iterable*, or *default* if *iterable* is
    empty.

        >>> first([0, 1, 2, 3])
        0
        >>> first([], 'some default')
        'some default'

    If *default* is not provided and there are no items in the iterable,
    raise ``ValueError``.

    :func:`first` is useful when you have a generator of expensive-to-retrieve
    values and want any arbitrary one. It is marginally shorter than
    ``next(iter(iterable), default)``.

    zKfirst() was called on an empty iterable, and no default value was provided.)r5   r   )r   defaultitemr   r   r   ra      s   ra   c              
   C   sl   zt | tr| d W S t| drtt| W S t| ddd W S  tttfy5   |t	u r1t
d| Y S w )a  Return the last item of *iterable*, or *default* if *iterable* is
    empty.

        >>> last([0, 1, 2, 3])
        3
        >>> last([], 'some default')
        'some default'

    If *default* is not provided and there are no items in the iterable,
    raise ``ValueError``.
    __reversed__r4   maxlenzJlast() was called on an empty iterable, and no default value was provided.)
isinstancer   hasattrnextreversedr   
IndexError	TypeErrorStopIterationr5   r   )r   r   r   r   r   rq      s   


rq   c                 C   s   t t| |d |dS )ag  Return the nth or the last item of *iterable*,
    or *default* if *iterable* is empty.

        >>> nth_or_last([0, 1, 2, 3], 2)
        2
        >>> nth_or_last([0, 1], 2)
        1
        >>> nth_or_last([], 0, 'some default')
        'some default'

    If *default* is not provided and there are no items in the iterable,
    raise ``ValueError``.
    r4   r   )rq   r   )r   r   r   r   r   r   r{     s   r{   c                   @   sT   e Zd ZdZdd Zdd Zdd Zefdd	Zd
d Z	dd Z
dd Zdd ZdS )r   a  Wrap an iterator to allow lookahead and prepending elements.

    Call :meth:`peek` on the result to get the value that will be returned
    by :func:`next`. This won't advance the iterator:

        >>> p = peekable(['a', 'b'])
        >>> p.peek()
        'a'
        >>> next(p)
        'a'

    Pass :meth:`peek` a default value to return that instead of raising
    ``StopIteration`` when the iterator is exhausted.

        >>> p = peekable([])
        >>> p.peek('hi')
        'hi'

    peekables also offer a :meth:`prepend` method, which "inserts" items
    at the head of the iterable:

        >>> p = peekable([1, 2, 3])
        >>> p.prepend(10, 11, 12)
        >>> next(p)
        10
        >>> p.peek()
        11
        >>> list(p)
        [11, 12, 1, 2, 3]

    peekables can be indexed. Index 0 is the item that will be returned by
    :func:`next`, index 1 is the item after that, and so on:
    The values up to the given index will be cached.

        >>> p = peekable(['a', 'b', 'c', 'd'])
        >>> p[0]
        'a'
        >>> p[1]
        'b'
        >>> next(p)
        'a'

    Negative indexes are supported, but be aware that they will cache the
    remaining items in the source iterator, which may require significant
    storage.

    To check whether a peekable is exhausted, check its truth value:

        >>> p = peekable(['a', 'b'])
        >>> if p:  # peekable has items
        ...     list(p)
        ['a', 'b']
        >>> if not p:  # peekable is exhausted
        ...     list(p)
        []

    c                 C   s   t || _t | _d S r   )r   _itr   _cacheselfr   r   r   r   __init__f  s   
zpeekable.__init__c                 C      | S r   r   r   r   r   r   __iter__j     zpeekable.__iter__c                 C   $   z|    W dS  ty   Y dS w NFTpeekr   r   r   r   r   __bool__m     
zpeekable.__bool__c                 C   sH   | j sz| j t| j W n ty   |tu r | Y S w | j d S )zReturn the item that will be next returned from ``next()``.

        Return ``default`` if there are no items left. If ``default`` is not
        provided, raise ``StopIteration``.

        r   )r   appendr   r   r   r5   )r   r   r   r   r   r   t  s   
zpeekable.peekc                 G   s   | j t| dS )a  Stack up items to be the next ones returned from ``next()`` or
        ``self.peek()``. The items will be returned in
        first in, first out order::

            >>> p = peekable([1, 2, 3])
            >>> p.prepend(10, 11, 12)
            >>> next(p)
            10
            >>> list(p)
            [11, 12, 1, 2, 3]

        It is possible, by prepending items, to "resurrect" a peekable that
        previously raised ``StopIteration``.

            >>> p = peekable([])
            >>> next(p)
            Traceback (most recent call last):
              ...
            StopIteration
            >>> p.prepend(1)
            >>> next(p)
            1
            >>> next(p)
            Traceback (most recent call last):
              ...
            StopIteration

        N)r   
extendleftr   )r   itemsr   r   r   prepend  s   zpeekable.prependc                 C   s   | j r| j  S t| jS r   )r   popleftr   r   r   r   r   r   __next__  s   

zpeekable.__next__c                 C   s   |j d u rdn|j }|dkr#|jd u rdn|j}|jd u rtn|j}n |dk r?|jd u r.dn|j}|jd u r;t d n|j}ntd|dk sK|dk rS| j| j ntt	||d t}t
| j}||krr| jt| j||  t| j| S )Nr4   r   r   zslice step cannot be zero)stepstartstopr2   r   r   extendr   minmaxr   r   list)r   indexr   r   r   r   	cache_lenr   r   r   
_get_slice  s   
zpeekable._get_slicec                 C   sd   t |tr
| |S t| j}|dk r| j| j n||kr-| jt| j|d |  | j| S Nr   r4   )r   slicer   r   r   r   r   r   )r   r   r   r   r   r   __getitem__  s   



zpeekable.__getitem__N)__name__
__module____qualname____doc__r   r   r   r5   r   r   r   r   r  r   r   r   r   r   +  s    :r   c                    s   t   fdd}|S )ab  Decorator that automatically advances a PEP-342-style "reverse iterator"
    to its first yield point so you don't have to call ``next()`` on it
    manually.

        >>> @consumer
        ... def tally():
        ...     i = 0
        ...     while True:
        ...         print('Thing number %s is %s.' % (i, (yield)))
        ...         i += 1
        ...
        >>> t = tally()
        >>> t.send('red')
        Thing number 0 is red.
        >>> t.send('fish')
        Thing number 1 is fish.

    Without the decorator, you would have to call ``next(t)`` before
    ``t.send()`` could be used.

    c                     s    | i |}t | |S r   r   )argskwargsgenfuncr   r   wrapper  s   zconsumer.<locals>.wrapper)r   )r  r  r   r  r   rQ     s   rQ   c                 C   s   t ttdt| S )a}  Return the number of items in *iterable*.

    For example, there are 168 prime numbers below 1,000:

        >>> ilen(sieve(1000))
        168

    Equivalent to, but faster than::

        def ilen(iterable):
            count = 0
            for _ in iterable:
                count += 1
            return count

    This fully consumes the iterable, so handle with care.

    r4   )sumr   r   zipr   r   r   r   rg     s   rg   c                 c   s2    t t
 	 |V  | |}q1 sw   Y  dS )a  Return ``start``, ``func(start)``, ``func(func(start))``, ...

    Produces an infinite iterator. To add a stopping condition,
    use :func:`take`, ``takewhile``, or :func:`takewhile_inclusive`:.

    >>> take(10, iterate(lambda x: 2*x, 1))
    [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]

    >>> collatz = lambda x: 3*x + 1 if x%2==1 else x // 2
    >>> list(takewhile_inclusive(lambda x: x!=1, iterate(collatz, 10)))
    [10, 5, 16, 8, 4, 2, 1]

    TN)r   r   )r  r   r   r   r   rn   	  s   
rn   c                 c   s6    | }|E dH  W d   dS 1 sw   Y  dS )a:  Wrap an iterable in a ``with`` statement, so it closes once exhausted.

    For example, this will close the file when the iterator is exhausted::

        upper_lines = (line.upper() for line in with_iter(open('foo')))

    Any context manager which returns an iterable is a candidate for
    ``with_iter``.

    Nr   )context_managerr   r   r   r   r     s   "r   c                 C   sJ   t | }|D ]}|D ]}d|d|d}|pt||  S |p$td)a  Return the first item from *iterable*, which is expected to contain only
    that item. Raise an exception if *iterable* is empty or has more than one
    item.

    :func:`one` is useful for ensuring that an iterable contains only one item.
    For example, it can be used to retrieve the result of a database query
    that is expected to return a single row.

    If *iterable* is empty, ``ValueError`` will be raised. You may specify a
    different exception with the *too_short* keyword:

        >>> it = []
        >>> one(it)  # doctest: +IGNORE_EXCEPTION_DETAIL
        Traceback (most recent call last):
        ...
        ValueError: too few items in iterable (expected 1)'
        >>> too_short = IndexError('too few items')
        >>> one(it, too_short=too_short)  # doctest: +IGNORE_EXCEPTION_DETAIL
        Traceback (most recent call last):
        ...
        IndexError: too few items

    Similarly, if *iterable* contains more than one item, ``ValueError`` will
    be raised. You may specify a different exception with the *too_long*
    keyword:

        >>> it = ['too', 'many']
        >>> one(it)  # doctest: +IGNORE_EXCEPTION_DETAIL
        Traceback (most recent call last):
        ...
        ValueError: Expected exactly one item in iterable, but got 'too',
        'many', and perhaps more.
        >>> too_long = RuntimeError
        >>> one(it, too_long=too_long)  # doctest: +IGNORE_EXCEPTION_DETAIL
        Traceback (most recent call last):
        ...
        RuntimeError

    Note that :func:`one` attempts to advance *iterable* twice to ensure there
    is only one item. See :func:`spy` or :func:`peekable` to check iterable
    contents less destructively.

    /Expected exactly one item in iterable, but got , , and perhaps more.z&too few items in iterable (expected 1)r   r   )r   	too_shorttoo_longr   ra   secondmsgr   r   r   r   ,  s   ,r   c                 G   s   | | r   r   )	exceptionr  r   r   r   r   d  s   r   c                 c   s~    |du r	dd }|du rdd }t | }d}t||D ]	}|V  |d7 }q||k r0|| dS |D ]
}||d   dS dS )aw  Validate that *iterable* has exactly *n* items and return them if
    it does. If it has fewer than *n* items, call function *too_short*
    with those items. If it has more than *n* items, call function
    *too_long* with the first ``n + 1`` items.

        >>> iterable = ['a', 'b', 'c', 'd']
        >>> n = 4
        >>> list(strictly_n(iterable, n))
        ['a', 'b', 'c', 'd']

    Note that the returned iterable must be consumed in order for the check to
    be made.

    By default, *too_short* and *too_long* are functions that raise
    ``ValueError``.

        >>> list(strictly_n('ab', 3))  # doctest: +IGNORE_EXCEPTION_DETAIL
        Traceback (most recent call last):
        ...
        ValueError: too few items in iterable (got 2)

        >>> list(strictly_n('abc', 2))  # doctest: +IGNORE_EXCEPTION_DETAIL
        Traceback (most recent call last):
        ...
        ValueError: too many items in iterable (got at least 3)

    You can instead supply functions that do something else.
    *too_short* will be called with the number of items in *iterable*.
    *too_long* will be called with `n + 1`.

        >>> def too_short(item_count):
        ...     raise RuntimeError
        >>> it = strictly_n('abcd', 6, too_short=too_short)
        >>> list(it)  # doctest: +IGNORE_EXCEPTION_DETAIL
        Traceback (most recent call last):
        ...
        RuntimeError

        >>> def too_long(item_count):
        ...     print('The boss is going to hear about this')
        >>> it = strictly_n('abcdef', 4, too_long=too_long)
        >>> list(it)
        The boss is going to hear about this
        ['a', 'b', 'c', 'd']

    Nc                 S      t td|  dS )NzToo few items in iterable (got )r   r   
item_countr   r   r   <lambda>      
zstrictly_n.<locals>.<lambda>c                 S   r  )Nz)Too many items in iterable (got at least r  r  r  r   r   r   r     r!  r   r4   )r   r   )r   r   r  r  itsentr   r   r   r   r   h  s"   /
r   c           	         s  fdd}dd }t | z  d}W n: tyP   d}tt }D ]}|| | q%fddD }|  d	d
 | D   fddY nw t|du r[}|kra|nt||d}d|  k rqkrn n|ry|S fdd||D S t	|rdS dS )aT  Yield successive distinct permutations of the elements in *iterable*.

        >>> sorted(distinct_permutations([1, 0, 1]))
        [(0, 1, 1), (1, 0, 1), (1, 1, 0)]

    Equivalent to yielding from ``set(permutations(iterable))``, except
    duplicates are not generated and thrown away. For larger input sequences
    this is much more efficient.

    Duplicate permutations arise when there are duplicated elements in the
    input iterable. The number of items returned is
    `n! / (x_1! * x_2! * ... * x_n!)`, where `n` is the total number of
    items input, and each `x_i` is the count of a distinct item in the input
    sequence. The function :func:`multinomial` computes this directly.

    If *r* is given, only the *r*-length permutations are yielded.

        >>> sorted(distinct_permutations([1, 0, 1], r=2))
        [(0, 1), (1, 0), (1, 1)]
        >>> sorted(distinct_permutations(range(3), r=2))
        [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]

    *iterable* need not be sortable, but note that using equal (``x == y``)
    but non-identical (``id(x) != id(y)``) elements may produce surprising
    behavior. For example, ``1`` and ``True`` are equal but non-identical:

        >>> list(distinct_permutations([1, True, '3']))  # doctest: +SKIP
        [
            (1, True, '3'),
            (1, '3', True),
            ('3', 1, True)
        ]
        >>> list(distinct_permutations([1, 2, '3']))  # doctest: +SKIP
        [
            (1, 2, '3'),
            (1, '3', 2),
            (2, 1, '3'),
            (2, '3', 1),
            ('3', 1, 2),
            ('3', 2, 1)
        ]
    c                 3   s    	 t | V  t d ddD ]}| | | |d  k r nqd S t d |dD ]}| | | | k r4 nq(| | | | | |< | |< | d |  d | |d d < q)NT   r   r4   )tuplerange)Aij)sizer   r   _full  s   
z$distinct_permutations.<locals>._fullc           	      s   s4   | d | | |d  }}t |d dd}t t|}	 t|V  |d }|D ]}|| |k r2 n|| }q(d S |D ]}|| || krT|| || ||< ||<  nq;|D ]}|| || krp|| || ||< ||<  nqW||d || d 7 }|d7 }|d ||  ||| d  ||d < |d d < q)Nr4   r   )r&  r   r%  )	r'  rheadtailright_head_indexesleft_tail_indexespivotr(  r)  r   r   r   _partial  s4   

2z'distinct_permutations.<locals>._partialTFc                    s   g | ]}  |qS r   )r   ).0r   )r   r   r   
<listcomp>,  s    z)distinct_permutations.<locals>.<listcomp>c                 S   s   i | ]	\}}|t |qS r   )r   )r3  kvr   r   r   
<dictcomp>/  s    z)distinct_permutations.<locals>.<dictcomp>c                    s   t  fdd| D S )Nc                 3   s    | ]	}t  | V  qd S r   r  )r3  r   equivalent_itemsr   r   	<genexpr>2  s    
z@distinct_permutations.<locals>.permuted_items.<locals>.<genexpr>r%  )permuted_indicesr8  r   r   permuted_items1  s   z-distinct_permutations.<locals>.permuted_itemsN)r,  r   c                 3   s    | ]} |V  qd S r   r   )r3  r<  )r=  r   r   r:  A  s
    
z(distinct_permutations.<locals>.<genexpr>r   )r   )
r   sortr   r   r   r   r   r   r	   r   )	r   r,  r+  r2  sortableindices_dictr   indices	algorithmr   )r9  r   r=  r*  r   rW     s6   -'
rW   c                 C   sX   |dkrt d|dkrttt| |ddS t| g}t||}ttt||ddS )a6  Intersperse filler element *e* among the items in *iterable*, leaving
    *n* items between each filler element.

        >>> list(intersperse('!', [1, 2, 3, 4, 5]))
        [1, '!', 2, '!', 3, '!', 4, '!', 5]

        >>> list(intersperse(None, [1, 2, 3, 4, 5], n=2))
        [1, 2, None, 3, 4, None, 5]

    r   zn must be > 0r4   N)r   r   rh   r   rI   r9   )r   r   r   fillerchunksr   r   r   rk   I  s   

rk   c                     sF   dd | D }t ttt|  fdd D fdd|D S )a  Return the elements from each of the input iterables that aren't in the
    other input iterables.

    For example, suppose you have a set of packages, each with a set of
    dependencies::

        {'pkg_1': {'A', 'B'}, 'pkg_2': {'B', 'C'}, 'pkg_3': {'B', 'D'}}

    If you remove one package, which dependencies can also be removed?

    If ``pkg_1`` is removed, then ``A`` is no longer necessary - it is not
    associated with ``pkg_2`` or ``pkg_3``. Similarly, ``C`` is only needed for
    ``pkg_2``, and ``D`` is only needed for ``pkg_3``::

        >>> unique_to_each({'A', 'B'}, {'B', 'C'}, {'B', 'D'})
        [['A'], ['C'], ['D']]

    If there are duplicates in one input iterable that aren't in the others
    they will be duplicated in the output. Input order is preserved::

        >>> unique_to_each("mississippi", "missouri")
        [['p', 'p'], ['o', 'u', 'r']]

    It is assumed that the elements of each iterable are hashable.

    c                 S      g | ]}t |qS r   )r   r3  r"  r   r   r   r4  ~      z"unique_to_each.<locals>.<listcomp>c                    s   h | ]
} | d kr|qS r4   r   )r3  element)countsr   r   	<setcomp>      z!unique_to_each.<locals>.<setcomp>c                    s   g | ]
}t t j|qS r   )r   filter__contains__rF  )uniquesr   r   r4    rL  )r   r   r   r   set)	iterablespoolr   )rJ  rO  r   r   c  s   r   c           	      c   s    |dk r	t d|dkrdV  dS |dk rt dt| }tt|||d}|s+dS t||k rAt||f|t|   V  dS t|V  |f||krP|d n|d  }t|jt||}t||d d|D ]}t|V  qgdS )aM  Return a sliding window of width *n* over the given iterable.

        >>> all_windows = windowed([1, 2, 3, 4, 5], 3)
        >>> list(all_windows)
        [(1, 2, 3), (2, 3, 4), (3, 4, 5)]

    When the window is larger than the iterable, *fillvalue* is used in place
    of missing values:

        >>> list(windowed([1, 2, 3], 4))
        [(1, 2, 3, None)]

    Each window will advance in increments of *step*:

        >>> list(windowed([1, 2, 3, 4, 5, 6], 3, fillvalue='!', step=2))
        [(1, 2, 3), (3, 4, 5), (5, 6, '!')]

    To slide into the iterable's items, use :func:`chain` to add filler items
    to the left:

        >>> iterable = [1, 2, 3, 4]
        >>> n = 3
        >>> padding = [None] * (n - 1)
        >>> list(windowed(chain(padding, iterable), 3))
        [(None, None, 1), (None, 1, 2), (1, 2, 3), (2, 3, 4)]
    r   n must be >= 0r   Nr4   zstep must be >= 1r   )	r   r   r   r   r   r%  r   r   r   )	seqr   	fillvaluer   r   windowpaddingrC  _r   r   r   r     s*   
r   c                 c   sv    g }t | D ]}|| |fV  qt|}t|}td|d D ]}t|| d D ]}||||  V  q,q"dS )aF  Yield all of the substrings of *iterable*.

        >>> [''.join(s) for s in substrings('more')]
        ['m', 'o', 'r', 'e', 'mo', 'or', 're', 'mor', 'ore', 'more']

    Note that non-string iterables can also be subdivided.

        >>> list(substrings([0, 1, 2]))
        [(0,), (1,), (2,), (0, 1), (1, 2), (0, 1, 2)]

    r$  r4   N)r   r   r%  r   r&  )r   rT  r   r  r   r(  r   r   r   r     s   

r   c                    s0   t dt d }|rt|} fdd|D S )a@  Yield all substrings and their positions in *seq*

    The items yielded will be a tuple of the form ``(substr, i, j)``, where
    ``substr == seq[i:j]``.

    This function only works for iterables that support slicing, such as
    ``str`` objects.

    >>> for item in substrings_indexes('more'):
    ...    print(item)
    ('m', 0, 1)
    ('o', 1, 2)
    ('r', 2, 3)
    ('e', 3, 4)
    ('mo', 0, 2)
    ('or', 1, 3)
    ('re', 2, 4)
    ('mor', 0, 3)
    ('ore', 1, 4)
    ('more', 0, 4)

    Set *reverse* to ``True`` to yield the same items in the opposite order.


    r4   c                 3   sD    | ]}t t | d  D ]} |||  ||| fV  qqdS r4   N)r&  r   )r3  Lr(  rT  r   r   r:    s    z%substrings_indexes.<locals>.<genexpr>)r&  r   r   )rT  reverser,  r   r[  r   r     s   
r   c                   @   s:   e Zd ZdZdddZdd Zdd Zd	d
 Zdd ZdS )rG   a  Wrap *iterable* and return an object that buckets the iterable into
    child iterables based on a *key* function.

        >>> iterable = ['a1', 'b1', 'c1', 'a2', 'b2', 'c2', 'b3']
        >>> s = bucket(iterable, key=lambda x: x[0])  # Bucket by 1st character
        >>> sorted(list(s))  # Get the keys
        ['a', 'b', 'c']
        >>> a_iterable = s['a']
        >>> next(a_iterable)
        'a1'
        >>> next(a_iterable)
        'a2'
        >>> list(s['b'])
        ['b1', 'b2', 'b3']

    The original iterable will be advanced and its items will be cached until
    they are used by the child iterables. This may require significant storage.

    By default, attempting to select a bucket to which no items belong  will
    exhaust the iterable and cache all values.
    If you specify a *validator* function, selected buckets will instead be
    checked against it.

        >>> from itertools import count
        >>> it = count(1, 2)  # Infinite sequence of odd numbers
        >>> key = lambda x: x % 10  # Bucket by last digit
        >>> validator = lambda x: x in {1, 3, 5, 7, 9}  # Odd digits only
        >>> s = bucket(it, key=key, validator=validator)
        >>> 2 in s
        False
        >>> list(s[2])
        []

    Nc                 C   s,   t || _|| _tt| _|pdd | _d S )Nc                 S   s   dS NTr   r   r   r   r   r   "      z!bucket.__init__.<locals>.<lambda>)r   r   _keyr   r   r   
_validator)r   r   key	validatorr   r   r   r     s   

zbucket.__init__c                 C   sH   |  |sdS zt| | }W n
 ty   Y dS w | j| | dS r   )ra  r   r   r   
appendleft)r   valuer   r   r   r   rN  $  s   
zbucket.__contains__c                 c   s~    	 | j | r| j |  V  n.	 zt| j}W n
 ty"   Y dS w | |}||kr0|V  n| |r=| j | | qq)z
        Helper to yield items from the parent iterator that match *value*.
        Items that don't match are stored in the local cache as they
        are encountered.
        TN)r   r   r   r   r   r`  ra  r   )r   re  r   
item_valuer   r   r   _get_values1  s$   


zbucket._get_valuesc                 C   s:   | j D ]}| |}| |r| j| | qt| jS r   )r   r`  ra  r   r   r   )r   r   rf  r   r   r   r   K  s   



zbucket.__iter__c                 C   s   |  |s	tdS | |S )Nr   )ra  r   rg  r   re  r   r   r   r  S  s   

zbucket.__getitem__r   )	r  r  r  r  r   rN  rg  r   r  r   r   r   r   rG     s    
#rG   c                 C   s   t | \}}t|||fS )a  Return a 2-tuple with a list containing the first *n* elements of
    *iterable*, and an iterator with the same items as *iterable*.
    This allows you to "look ahead" at the items in the iterable without
    advancing it.

    There is one item in the list by default:

        >>> iterable = 'abcdefg'
        >>> head, iterable = spy(iterable)
        >>> head
        ['a']
        >>> list(iterable)
        ['a', 'b', 'c', 'd', 'e', 'f', 'g']

    You may use unpacking to retrieve items instead of lists:

        >>> (head,), iterable = spy('abcdefg')
        >>> head
        'a'
        >>> (first, second), iterable = spy('abcdefg', 2)
        >>> first
        'a'
        >>> second
        'b'

    The number of items requested can be larger than the number of items in
    the iterable:

        >>> iterable = [1, 2, 3, 4, 5]
        >>> head, iterable = spy(iterable, 10)
        >>> head
        [1, 2, 3, 4, 5]
        >>> list(iterable)
        [1, 2, 3, 4, 5]

    )r   r=   )r   r   r   r   r   r   r   r   Z  s   %r   c                  G   s   t t|  S )a4  Return a new iterable yielding from each iterable in turn,
    until the shortest is exhausted.

        >>> list(interleave([1, 2, 3], [4, 5], [6, 7, 8]))
        [1, 4, 6, 2, 5, 7]

    For a version that doesn't terminate after the shortest iterable is
    exhausted, see :func:`interleave_longest`.

    )r   r   r  rQ  r   r   r   rh     s   rh   c                  G   s"   t t| dti}dd |D S )as  Return a new iterable yielding from each iterable in turn,
    skipping any that are exhausted.

        >>> list(interleave_longest([1, 2, 3], [4, 5], [6, 7, 8]))
        [1, 4, 6, 2, 5, 7, 3, 8]

    This function produces the same output as :func:`roundrobin`, but may
    perform better for some inputs (in particular when the number of iterables
    is large).

    rU  c                 s   s    | ]	}|t ur|V  qd S r   )r5   r3  r   r   r   r   r:        z%interleave_longest.<locals>.<genexpr>)r   r   r   r5   )rQ  r(  r   r   r   rj     s   rj   c                 #   sN   du rz	dd  D W n t y   tdw t tkr&tdt}tt|fdddd	}fd
d|D } fdd|D }|d |dd }}|d |dd }}	|| gt| }
t}|rt|V  |d8 }dd t|
|D }
t|
D ]\}}|dk rt|	| V  |d8 }|
|  |7  < q|sndS dS )aG  
    Interleave multiple iterables so that their elements are evenly distributed
    throughout the output sequence.

    >>> iterables = [1, 2, 3, 4, 5], ['a', 'b']
    >>> list(interleave_evenly(iterables))
    [1, 2, 'a', 3, 4, 'b', 5]

    >>> iterables = [[1, 2, 3], [4, 5], [6, 7, 8]]
    >>> list(interleave_evenly(iterables))
    [1, 6, 4, 2, 7, 3, 8, 5]

    This function requires iterables of known length. Iterables without
    ``__len__()`` can be used by manually specifying lengths with *lengths*:

    >>> from itertools import combinations, repeat
    >>> iterables = [combinations(range(4), 2), ['a', 'b', 'c']]
    >>> lengths = [4 * (4 - 1) // 2, 3]
    >>> list(interleave_evenly(iterables, lengths=lengths))
    [(0, 1), (0, 2), 'a', (0, 3), (1, 2), 'b', (1, 3), (2, 3), 'c']

    Based on Bresenham's algorithm.
    Nc                 S   rE  r   r   rF  r   r   r   r4    rG  z%interleave_evenly.<locals>.<listcomp>z^Iterable lengths could not be determined automatically. Specify them with the lengths keyword.z,Mismatching number of iterables and lengths.c                    s    |  S r   r   r(  lengthsr   r   r     s    z#interleave_evenly.<locals>.<lambda>Trb  r\  c                    s   g | ]} | qS r   r   r3  r(  rn  r   r   r4    rG  c                    s   g | ]}t  | qS r   )r   rq  ri  r   r   r4        r   r4   c                 S   s   g | ]\}}|| qS r   r   )r3  r   deltar   r   r   r4    rr  )	r   r   r   sortedr&  r  r   r  	enumerate)rQ  ro  dimslengths_permutelengths_desc
iters_descdelta_primarydeltas_secondaryiter_primaryiters_secondaryerrorsto_yieldr(  e_r   )rQ  ro  r   ri     s@   
ri   c           	   	   c   s    t  }|dt| df |rd| }|\}}|dur&||kr&|E dH  q|D ]7}t|ttfs:|dur>t||r>|V  q(zt|}W n tyP   |V  Y q(w || ||d |f  |sdS dS )a>  Flatten an iterable with multiple levels of nesting (e.g., a list of
    lists of tuples) into non-iterable types.

        >>> iterable = [(1, 2), ([3, 4], [[5], [6]])]
        >>> list(collapse(iterable))
        [1, 2, 3, 4, 5, 6]

    Binary and text strings are not considered iterable and
    will not be collapsed.

    To avoid collapsing other types, specify *base_type*:

        >>> iterable = ['ab', ('cd', 'ef'), ['gh', 'ij']]
        >>> list(collapse(iterable, base_type=tuple))
        ['ab', ('cd', 'ef'), 'gh', 'ij']

    Specify *levels* to stop flattening after a certain level:

    >>> iterable = [('a', ['b']), ('c', ['d'])]
    >>> list(collapse(iterable))  # Fully flattened
    ['a', 'b', 'c', 'd']
    >>> list(collapse(iterable, levels=1))  # Only one level flattened
    ['a', ['b'], 'c', ['d']]

    r   r4   N)	r   rd  r   r   r   strbytesr   r   )	r   	base_typelevelsstack
node_grouplevelnodesnodetreer   r   r   rL     s,   


rL   c                 c   s    z5|dur	|  |du r|D ]	}| | |V  qnt ||D ]}| | |E dH  qW |dur5|  dS dS |dur?|  w w )au  Invoke *func* on each item in *iterable* (or on each *chunk_size* group
    of items) before yielding the item.

    `func` must be a function that takes a single argument. Its return value
    will be discarded.

    *before* and *after* are optional functions that take no arguments. They
    will be executed before iteration starts and after it ends, respectively.

    `side_effect` can be used for logging, updating progress bars, or anything
    that is not functionally "pure."

    Emitting a status message:

        >>> from more_itertools import consume
        >>> func = lambda item: print('Received {}'.format(item))
        >>> consume(side_effect(func, range(2)))
        Received 0
        Received 1

    Operating on chunks of items:

        >>> pair_sums = []
        >>> func = lambda chunk: pair_sums.append(sum(chunk))
        >>> list(side_effect(func, [0, 1, 2, 3, 4, 5], 2))
        [0, 1, 2, 3, 4, 5]
        >>> list(pair_sums)
        [1, 5, 9]

    Writing to a file-like object:

        >>> from io import StringIO
        >>> from more_itertools import consume
        >>> f = StringIO()
        >>> func = lambda x: print(x, file=f)
        >>> before = lambda: print(u'HEADER', file=f)
        >>> after = f.close
        >>> it = [u'a', u'b', u'c']
        >>> consume(side_effect(func, it, before=before, after=after))
        >>> f.closed
        True

    N)rI   )r  r   
chunk_sizebeforeafterr   r   r   r   r   r     s$   ,
r   c                    s@   t tfddtdD  |r fdd}t| S  S )ap  Yield slices of length *n* from the sequence *seq*.

    >>> list(sliced((1, 2, 3, 4, 5, 6), 3))
    [(1, 2, 3), (4, 5, 6)]

    By the default, the last yielded slice will have fewer than *n* elements
    if the length of *seq* is not divisible by *n*:

    >>> list(sliced((1, 2, 3, 4, 5, 6, 7, 8), 3))
    [(1, 2, 3), (4, 5, 6), (7, 8)]

    If the length of *seq* is not divisible by *n* and *strict* is
    ``True``, then ``ValueError`` will be raised before the last
    slice is yielded.

    This function will only work for iterables that support slicing.
    For non-sliceable iterables, see :func:`chunked`.

    c                 3   s     | ]}||   V  qd S r   r   rq  )r   rT  r   r   r:  p      zsliced.<locals>.<genexpr>r   c                  3   r   )Nzseq is not divisible by n.r   )_slicer   r   r   r   s  r   zsliced.<locals>.ret)r   r   r   r   )rT  r   r   r   r   )r   r   rT  r   r   \  s
    
r   r   c                 c   s    |dkrt | V  dS g }t| }|D ]'}||r6|V  |r#|gV  |dkr/t |V   dS g }|d8 }q|| q|V  dS )a;  Yield lists of items from *iterable*, where each list is delimited by
    an item where callable *pred* returns ``True``.

        >>> list(split_at('abcdcba', lambda x: x == 'b'))
        [['a'], ['c', 'd', 'c'], ['a']]

        >>> list(split_at(range(10), lambda n: n % 2 == 1))
        [[0], [2], [4], [6], [8], []]

    At most *maxsplit* splits are done. If *maxsplit* is not specified or -1,
    then there is no limit on the number of splits:

        >>> list(split_at(range(10), lambda n: n % 2 == 1, maxsplit=2))
        [[0], [2], [4, 5, 6, 7, 8, 9]]

    By default, the delimiting items are not included in the output.
    To include them, set *keep_separator* to ``True``.

        >>> list(split_at('abcdcba', lambda x: x == 'b', keep_separator=True))
        [['a'], ['b'], ['c', 'd', 'c'], ['b'], ['a']]

    r   Nr4   r   r   r   )r   predmaxsplitkeep_separatorbufr"  r   r   r   r   r   ~  s$   



r   c                 c   s    |dkrt | V  dS g }t| }|D ]%}||r4|r4|V  |dkr.|gt | V   dS g }|d8 }|| q|rA|V  dS dS )a\  Yield lists of items from *iterable*, where each list ends just before
    an item for which callable *pred* returns ``True``:

        >>> list(split_before('OneTwo', lambda s: s.isupper()))
        [['O', 'n', 'e'], ['T', 'w', 'o']]

        >>> list(split_before(range(10), lambda n: n % 3 == 0))
        [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]

    At most *maxsplit* splits are done. If *maxsplit* is not specified or -1,
    then there is no limit on the number of splits:

        >>> list(split_before(range(10), lambda n: n % 3 == 0, maxsplit=2))
        [[0, 1, 2], [3, 4, 5], [6, 7, 8, 9]]
    r   Nr4   r  r   r  r  r  r"  r   r   r   r   r     s$   

r   c                 c   s    |dkrt | V  dS g }t| }|D ]&}|| ||r:|r:|V  |dkr4t |}|r1|V   dS g }|d8 }q|rB|V  dS dS )a[  Yield lists of items from *iterable*, where each list ends with an
    item where callable *pred* returns ``True``:

        >>> list(split_after('one1two2', lambda s: s.isdigit()))
        [['o', 'n', 'e', '1'], ['t', 'w', 'o', '2']]

        >>> list(split_after(range(10), lambda n: n % 3 == 0))
        [[0], [1, 2, 3], [4, 5, 6], [7, 8, 9]]

    At most *maxsplit* splits are done. If *maxsplit* is not specified or -1,
    then there is no limit on the number of splits:

        >>> list(split_after(range(10), lambda n: n % 3 == 0, maxsplit=2))
        [[0], [1, 2, 3], [4, 5, 6, 7, 8, 9]]

    r   Nr4   r  r  r   r   r   r     s*   


r   c                 c   s    |dkrt | V  dS t| }zt|}W n
 ty    Y dS w |g}|D ]&}|||rE|V  |dkr?|gt | V   dS g }|d8 }|| |}q&|V  dS )a  Split *iterable* into pieces based on the output of *pred*.
    *pred* should be a function that takes successive pairs of items and
    returns ``True`` if the iterable should be split in between them.

    For example, to find runs of increasing numbers, split the iterable when
    element ``i`` is larger than element ``i + 1``:

        >>> list(split_when([1, 2, 3, 3, 2, 5, 2, 4, 2], lambda x, y: x > y))
        [[1, 2, 3, 3], [2, 5], [2, 4], [2]]

    At most *maxsplit* splits are done. If *maxsplit* is not specified or -1,
    then there is no limit on the number of splits:

        >>> list(split_when([1, 2, 3, 3, 2, 5, 2, 4, 2],
        ...                 lambda x, y: x > y, maxsplit=2))
        [[1, 2, 3, 3], [2, 5], [2, 4, 2]]

    r   Nr4   )r   r   r   r   r   )r   r  r  r"  cur_itemr  	next_itemr   r   r   r     s,   



r   c                 c   s@    t | }|D ]}|du rt|V   dS tt||V  qdS )a  Yield a list of sequential items from *iterable* of length 'n' for each
    integer 'n' in *sizes*.

        >>> list(split_into([1,2,3,4,5,6], [1,2,3]))
        [[1], [2, 3], [4, 5, 6]]

    If the sum of *sizes* is smaller than the length of *iterable*, then the
    remaining items of *iterable* will not be returned.

        >>> list(split_into([1,2,3,4,5,6], [2,3]))
        [[1, 2], [3, 4, 5]]

    If the sum of *sizes* is larger than the length of *iterable*, fewer items
    will be returned in the iteration that overruns *iterable* and further
    lists will be empty:

        >>> list(split_into([1,2,3,4], [1,2,3,4]))
        [[1], [2, 3], [4], []]

    When a ``None`` object is encountered in *sizes*, the returned list will
    contain items up to the end of *iterable* the same way that
    :func:`itertools.slice` does:

        >>> list(split_into([1,2,3,4,5,6,7,8,9,0], [2,3,None]))
        [[1, 2], [3, 4, 5], [6, 7, 8, 9, 0]]

    :func:`split_into` can be useful for grouping a series of items where the
    sizes of the groups are not uniform. An example would be where in a row
    from a table, multiple columns represent elements of the same feature
    (e.g. a point represented by x,y,z) but, the format is not the same for
    all columns.
    N)r   r   r   )r   sizesr"  r*  r   r   r   r      s   #
r   c                    sb   t   t t|du rS dk rtd|r) fdd}t| S tt S )a  Yield the elements from *iterable*, followed by *fillvalue*, such that
    at least *n* items are emitted.

        >>> list(padded([1, 2, 3], '?', 5))
        [1, 2, 3, '?', '?']

    If *next_multiple* is ``True``, *fillvalue* will be emitted until the
    number of items emitted is a multiple of *n*:

        >>> list(padded([1, 2, 3, 4], n=3, next_multiple=True))
        [1, 2, 3, 4, None, None]

    If *n* is ``None``, *fillvalue* will be emitted indefinitely.

    To create an *iterable* of exactly size *n*, you can truncate with
    :func:`islice`.

        >>> list(islice(padded([1, 2, 3], '?'), 5))
        [1, 2, 3, '?', '?']
        >>> list(islice(padded([1, 2, 3, 4, 5, 6, 7, 8], '?'), 5))
        [1, 2, 3, 4, 5]

    Nr4   n must be at least 1c                  3   s(     D ]} | fV  t d V  qd S Nr4   r   )ra   r   iterable_with_repeatr   r   r   slice_generatorn  s
   zpadded.<locals>.slice_generator)r   r   r   r   r   r   )r   rU  r   next_multipler  r   r  r   r   M  s   r   r$  c                 C   s   t tt| t|S )zRepeat each element in *iterable* *n* times.

    >>> list(repeat_each('ABC', 3))
    ['A', 'A', 'A', 'B', 'B', 'B', 'C', 'C', 'C']
    )r   r   r   r   )r   r   r   r   r   r   z  s   r   c                 c   s8    t }| D ]}|V  q|t u r|n|}t|E dH  dS )a"  After the *iterable* is exhausted, keep yielding its last element.

        >>> list(islice(repeat_last(range(3)), 5))
        [0, 1, 2, 2, 2]

    If the iterable is empty, yield *default* forever::

        >>> list(islice(repeat_last(range(0), 42), 5))
        [42, 42, 42, 42, 42]

    N)r5   r   )r   r   r   finalr   r   r   r     s   r   c                    s0    dk rt dt| } fddt|D S )a  Distribute the items from *iterable* among *n* smaller iterables.

        >>> group_1, group_2 = distribute(2, [1, 2, 3, 4, 5, 6])
        >>> list(group_1)
        [1, 3, 5]
        >>> list(group_2)
        [2, 4, 6]

    If the length of *iterable* is not evenly divisible by *n*, then the
    length of the returned iterables will not be identical:

        >>> children = distribute(3, [1, 2, 3, 4, 5, 6, 7])
        >>> [list(c) for c in children]
        [[1, 4, 7], [2, 5], [3, 6]]

    If the length of *iterable* is smaller than *n*, then the last returned
    iterables will be empty:

        >>> children = distribute(5, [1, 2, 3])
        >>> [list(c) for c in children]
        [[1], [2], [3], [], []]

    This function uses :func:`itertools.tee` and may require significant
    storage.

    If you need the order items in the smaller iterables to match the
    original iterable, see :func:`divide`.

    r4   r  c                    s   g | ]\}}t ||d  qS r   r  )r3  r   r"  r   r   r   r4    s    zdistribute.<locals>.<listcomp>)r   r   ru  )r   r   childrenr   r  r   rX     s   
rX   r   r   r4   c                 C   s    t | t|}t||||dS )a[  Yield tuples whose elements are offset from *iterable*.
    The amount by which the `i`-th item in each tuple is offset is given by
    the `i`-th item in *offsets*.

        >>> list(stagger([0, 1, 2, 3]))
        [(None, 0, 1), (0, 1, 2), (1, 2, 3)]
        >>> list(stagger(range(8), offsets=(0, 2, 4)))
        [(0, 2, 4), (1, 3, 5), (2, 4, 6), (3, 5, 7)]

    By default, the sequence will end when the final element of a tuple is the
    last item in the iterable. To continue until the first element of a tuple
    is the last item in the iterable, set *longest* to ``True``::

        >>> list(stagger([0, 1, 2, 3], longest=True))
        [(None, 0, 1), (0, 1, 2), (1, 2, 3), (2, 3, None), (3, None, None)]

    By default, ``None`` will be used to replace offsets beyond the end of the
    sequence. Specify *fillvalue* to use some other value.

    )offsetslongestrU  )r   r   r   )r   r  r  rU  r  r   r   r   r     s   r   c                  G   s   t dkr
tdt t|  S )a   ``zip`` the input *iterables* together, but raise
    ``UnequalIterablesError`` if they aren't all the same length.

        >>> it_1 = range(3)
        >>> it_2 = iter('abc')
        >>> list(zip_equal(it_1, it_2))
        [(0, 'a'), (1, 'b'), (2, 'c')]

        >>> it_1 = range(3)
        >>> it_2 = iter('abcd')
        >>> list(zip_equal(it_1, it_2)) # doctest: +IGNORE_EXCEPTION_DETAIL
        Traceback (most recent call last):
        ...
        more_itertools.more.UnequalIterablesError: Iterables have different
        lengths

    i 
zwzip_equal will be removed in a future version of more-itertools. Use the builtin zip function with strict=True instead.)r1   warningswarnDeprecationWarningr6   ri  r   r   r   r     s   	r   )r  rU  c                 G   s   t |t | krtdg }t|| D ](\}}|dk r(|tt|| | q|dkr6|t||d q|| q|rEt|d|iS t| S )aF  ``zip`` the input *iterables* together, but offset the `i`-th iterable
    by the `i`-th item in *offsets*.

        >>> list(zip_offset('0123', 'abcdef', offsets=(0, 1)))
        [('0', 'b'), ('1', 'c'), ('2', 'd'), ('3', 'e')]

    This can be used as a lightweight alternative to SciPy or pandas to analyze
    data sets in which some series have a lead or lag relationship.

    By default, the sequence will end when the shortest iterable is exhausted.
    To continue until the longest iterable is exhausted, set *longest* to
    ``True``.

        >>> list(zip_offset('0123', 'abcdef', offsets=(0, 1), longest=True))
        [('0', 'b'), ('1', 'c'), ('2', 'd'), ('3', 'e'), (None, 'f')]

    By default, ``None`` will be used to replace offsets beyond the end of the
    sequence. Specify *fillvalue* to use some other value.

    z,Number of iterables and offsets didn't matchr   NrU  )r   r   r  r   r   r   r   r   )r  r  rU  rQ  	staggeredr"  r   r   r   r   r     s   r   r   c                    sz   du r	t | }n!t|}t|dkr|d fdd}nt |   fdd}|r.tnt}t|t||  ||d S )aq  Return the input iterables sorted together, with *key_list* as the
    priority for sorting. All iterables are trimmed to the length of the
    shortest one.

    This can be used like the sorting function in a spreadsheet. If each
    iterable represents a column of data, the key list determines which
    columns are used for sorting.

    By default, all iterables are sorted using the ``0``-th iterable::

        >>> iterables = [(4, 3, 2, 1), ('a', 'b', 'c', 'd')]
        >>> sort_together(iterables)
        [(1, 2, 3, 4), ('d', 'c', 'b', 'a')]

    Set a different key list to sort according to another iterable.
    Specifying multiple keys dictates how ties are broken::

        >>> iterables = [(3, 1, 2), (0, 1, 0), ('c', 'b', 'a')]
        >>> sort_together(iterables, key_list=(1, 2))
        [(2, 3, 1), (0, 0, 1), ('a', 'c', 'b')]

    To sort by a function of the elements of the iterable, pass a *key*
    function. Its arguments are the elements of the iterables corresponding to
    the key list::

        >>> names = ('a', 'b', 'c')
        >>> lengths = (1, 2, 3)
        >>> widths = (5, 2, 1)
        >>> def area(length, width):
        ...     return length * width
        >>> sort_together([names, lengths, widths], key_list=(1, 2), key=area)
        [('c', 'b', 'a'), (3, 2, 1), (1, 2, 5)]

    Set *reverse* to ``True`` to sort in descending order.

        >>> sort_together([(1, 2, 3), ('c', 'b', 'a')], reverse=True)
        [(3, 2, 1), ('a', 'b', 'c')]

    If the *strict* keyword argument is ``True``, then
    ``UnequalIterablesError`` will be raised if any of the iterables have
    different lengths.

    Nr4   r   c                    s    |  S r   r   zipped_items)rb  
key_offsetr   r   r   W  s    zsort_together.<locals>.<lambda>c                    s    |  S r   r   r  )get_key_itemsrb  r   r   r   \  s    rp  )r,   r   r   r   r  rt  )rQ  key_listrb  r\  r   key_argumentzipperr   )r  rb  r  r   r     s   .
r   c                    sP   t t| \}} |sdS |d }t| t|}dd  t fddt|D S )a  The inverse of :func:`zip`, this function disaggregates the elements
    of the zipped *iterable*.

    The ``i``-th iterable contains the ``i``-th element from each element
    of the zipped iterable. The first element is used to determine the
    length of the remaining elements.

        >>> iterable = [('a', 1), ('b', 2), ('c', 3), ('d', 4)]
        >>> letters, numbers = unzip(iterable)
        >>> list(letters)
        ['a', 'b', 'c', 'd']
        >>> list(numbers)
        [1, 2, 3, 4]

    This is similar to using ``zip(*iterable)``, but it avoids reading
    *iterable* into memory. Note, however, that this function uses
    :func:`itertools.tee` and thus may require significant storage.

    r   r   c                    s    fdd}|S )Nc                    s   z|   W S  t y   tw r   )r   r   objrm  r   r   getter  s
   

z)unzip.<locals>.itemgetter.<locals>.getterr   )r(  r  r   rm  r   r,     s   zunzip.<locals>.itemgetterc                 3   s"    | ]\}}t  ||V  qd S r   r   )r3  r(  r"  r,   r   r   r:         zunzip.<locals>.<genexpr>)r   r   r   r   r%  ru  )r   r-  rQ  r   r  r   r   f  s   r   c           	      C   s   | dk rt dz|dd  W n ty   t|}Y nw |}tt|| \}}g }d}td| d D ]}|}|||krA|d n|7 }|t|||  q4|S )a~  Divide the elements from *iterable* into *n* parts, maintaining
    order.

        >>> group_1, group_2 = divide(2, [1, 2, 3, 4, 5, 6])
        >>> list(group_1)
        [1, 2, 3]
        >>> list(group_2)
        [4, 5, 6]

    If the length of *iterable* is not evenly divisible by *n*, then the
    length of the returned iterables will not be identical:

        >>> children = divide(3, [1, 2, 3, 4, 5, 6, 7])
        >>> [list(c) for c in children]
        [[1, 2, 3], [4, 5], [6, 7]]

    If the length of the iterable is smaller than n, then the last returned
    iterables will be empty:

        >>> children = divide(5, [1, 2, 3])
        >>> [list(c) for c in children]
        [[1], [2], [3], [], []]

    This function will exhaust the iterable before returning.
    If order is not important, see :func:`distribute`, which does not first
    pull the iterable into memory.

    r4   r  Nr   )r   r   r%  divmodr   r&  r   r   )	r   r   rT  r   r,  r   r   r(  r   r   r   r   rY     s    rY   c                 C   sT   | du rt dS |durt| |rt | fS zt | W S  ty)   t | f Y S w )ax  If *obj* is iterable, return an iterator over its items::

        >>> obj = (1, 2, 3)
        >>> list(always_iterable(obj))
        [1, 2, 3]

    If *obj* is not iterable, return a one-item iterable containing *obj*::

        >>> obj = 1
        >>> list(always_iterable(obj))
        [1]

    If *obj* is ``None``, return an empty iterable:

        >>> obj = None
        >>> list(always_iterable(None))
        []

    By default, binary and text strings are not considered iterable::

        >>> obj = 'foo'
        >>> list(always_iterable(obj))
        ['foo']

    If *base_type* is set, objects for which ``isinstance(obj, base_type)``
    returns ``True`` won't be considered iterable.

        >>> obj = {'a': 1}
        >>> list(always_iterable(obj))  # Iterate over the dict's keys
        ['a']
        >>> list(always_iterable(obj, base_type=dict))  # Treat dicts as a unit
        [{'a': 1}]

    Set *base_type* to ``None`` to avoid any special handling and treat objects
    Python considers iterable as iterable:

        >>> obj = 'foo'
        >>> list(always_iterable(obj, base_type=None))
        ['f', 'o', 'o']
    Nr   )r   r   r   )r  r  r   r   r   rE     s   )

rE   c                 C   sZ   |dk rt dt|\}}dg| }t|t| ||}ttt|d| d }t||S )as  Return an iterable over `(bool, item)` tuples where the `item` is
    drawn from *iterable* and the `bool` indicates whether
    that item satisfies the *predicate* or is adjacent to an item that does.

    For example, to find whether items are adjacent to a ``3``::

        >>> list(adjacent(lambda x: x == 3, range(6)))
        [(False, 0), (False, 1), (True, 2), (True, 3), (True, 4), (False, 5)]

    Set *distance* to change what counts as adjacent. For example, to find
    whether items are two places away from a ``3``:

        >>> list(adjacent(lambda x: x == 3, range(6), distance=2))
        [(False, 0), (True, 1), (True, 2), (True, 3), (True, 4), (True, 5)]

    This is useful for contextualizing the results of a search function.
    For example, a code comparison tool might want to identify lines that
    have changed, but also surrounding lines to give the viewer of the diff
    context.

    The predicate function will only be called once for each item in the
    iterable.

    See also :func:`groupby_transform`, which can be used with this function
    to group ranges of items with the same `bool` value.

    r   zdistance must be at least 0Fr$  r4   )r   r   r   r   anyr   r  )	predicater   distancei1i2rW  selectedadjacent_to_selectedr   r   r   rC     s   

rC   c                    s:   t | |}rfdd|D } r fdd|D }|S )a  An extension of :func:`itertools.groupby` that can apply transformations
    to the grouped data.

    * *keyfunc* is a function computing a key value for each item in *iterable*
    * *valuefunc* is a function that transforms the individual items from
      *iterable* after grouping
    * *reducefunc* is a function that transforms each group of items

    >>> iterable = 'aAAbBBcCC'
    >>> keyfunc = lambda k: k.upper()
    >>> valuefunc = lambda v: v.lower()
    >>> reducefunc = lambda g: ''.join(g)
    >>> list(groupby_transform(iterable, keyfunc, valuefunc, reducefunc))
    [('A', 'aaa'), ('B', 'bbb'), ('C', 'ccc')]

    Each optional argument defaults to an identity function if not specified.

    :func:`groupby_transform` is useful when grouping elements of an iterable
    using a separate iterable as the key. To do this, :func:`zip` the iterables
    and pass a *keyfunc* that extracts the first element and a *valuefunc*
    that extracts the second element::

        >>> from operator import itemgetter
        >>> keys = [0, 0, 1, 1, 1, 2, 2, 2, 3]
        >>> values = 'abcdefghi'
        >>> iterable = zip(keys, values)
        >>> grouper = groupby_transform(iterable, itemgetter(0), itemgetter(1))
        >>> [(k, ''.join(g)) for k, g in grouper]
        [(0, 'ab'), (1, 'cde'), (2, 'fgh'), (3, 'i')]

    Note that the order of items in the iterable is significant.
    Only adjacent items are grouped together, so if you don't want any
    duplicate groups, you should sort the iterable by the key function.

    c                 3   s"    | ]\}}|t  |fV  qd S r   r  r3  r5  g)	valuefuncr   r   r:  L  r  z$groupby_transform.<locals>.<genexpr>c                 3   s     | ]\}}| |fV  qd S r   r   r  )
reducefuncr   r   r:  N  r  r   )r   keyfuncr  r  r   r   )r  r  r   rc   &  s   
$rc   c                   @   s   e Zd ZdZeeddZdd Zdd Zdd Z	d	d
 Z
dd Zdd Zdd Zdd Zedd Zdd Zdd Zdd Zdd Zdd Zdd  Zd!S )"r   a<  An extension of the built-in ``range()`` function whose arguments can
    be any orderable numeric type.

    With only *stop* specified, *start* defaults to ``0`` and *step*
    defaults to ``1``. The output items will match the type of *stop*:

        >>> list(numeric_range(3.5))
        [0.0, 1.0, 2.0, 3.0]

    With only *start* and *stop* specified, *step* defaults to ``1``. The
    output items will match the type of *start*:

        >>> from decimal import Decimal
        >>> start = Decimal('2.1')
        >>> stop = Decimal('5.1')
        >>> list(numeric_range(start, stop))
        [Decimal('2.1'), Decimal('3.1'), Decimal('4.1')]

    With *start*, *stop*, and *step*  specified the output items will match
    the type of ``start + step``:

        >>> from fractions import Fraction
        >>> start = Fraction(1, 2)  # Start at 1/2
        >>> stop = Fraction(5, 2)  # End at 5/2
        >>> step = Fraction(1, 2)  # Count by 1/2
        >>> list(numeric_range(start, stop, step))
        [Fraction(1, 2), Fraction(1, 1), Fraction(3, 2), Fraction(2, 1)]

    If *step* is zero, ``ValueError`` is raised. Negative steps are supported:

        >>> list(numeric_range(3, -1, -1.0))
        [3.0, 2.0, 1.0, 0.0]

    Be aware of the limitations of floating point numbers; the representation
    of the yielded numbers may be surprising.

    ``datetime.datetime`` objects can be used for *start* and *stop*, if *step*
    is a ``datetime.timedelta`` object:

        >>> import datetime
        >>> start = datetime.datetime(2019, 1, 1)
        >>> stop = datetime.datetime(2019, 1, 3)
        >>> step = datetime.timedelta(days=1)
        >>> items = iter(numeric_range(start, stop, step))
        >>> next(items)
        datetime.datetime(2019, 1, 1, 0, 0)
        >>> next(items)
        datetime.datetime(2019, 1, 2, 0, 0)

    r   c                 G   s   t |}|dkr |\| _t| jd| _t| j| j d| _n5|dkr6|\| _| _t| j| j d| _n|dkrC|\| _| _| _n|dkrNtd| td| t| jd| _| j| jkrgtd| j| jk| _d S )Nr4   r   r$     z0numeric_range expected at least 1 argument, got z0numeric_range expected at most 3 arguments, got z&numeric_range() arg 3 must not be zero)	r   _stoptype_start_stepr   _zeror   _growing)r   r  argcr   r   r   r     s*   znumeric_range.__init__c                 C   s   | j r	| j| jk S | j| jkS r   )r  r  r  r   r   r   r   r     s   znumeric_range.__bool__c                 C   sx   | j r| j|  kr| jk rn dS || j | j | jkS dS | j|  kr+| jkr:n dS | j| | j  | jkS dS NF)r  r  r  r  r  )r   elemr   r   r   rN    s   znumeric_range.__contains__c                 C   s^   t |tr-t|  }t| }|s|r|o|S | j|jko,| j|jko,| d|dkS dS )Nr   F)r   r   boolr  r  _get_by_index)r   other
empty_selfempty_otherr   r   r   __eq__  s   



znumeric_range.__eq__c                 C   s   t |tr
| |S t |trc|jd u r| jn|j| j }|jd u s)|j| j kr-| j}n|j| jkr7| j	}n| |j}|j
d u sH|j
| jkrL| j	}n|j
| j krW| j}n| |j
}t|||S tdt|j )Nz6numeric range indices must be integers or slices, not )r   intr  r  r   r  r   _lenr  r  r   r   r   r  r  )r   rb  r   r   r   r   r   r   r    s(   


znumeric_range.__getitem__c                 C   s"   | rt | j| d| jfS | jS Nr   )hashr  r  r  _EMPTY_HASHr   r   r   r   __hash__  s   znumeric_range.__hash__c                    s>    fddt  D } jrttt j|S ttt j|S )Nc                 3   s     | ]} j | j  V  qd S r   )r  r  r3  r   r   r   r   r:    r  z)numeric_range.__iter__.<locals>.<genexpr>)r   r  r   r	   r/   r  r0   )r   valuesr   r   r   r     s   znumeric_range.__iter__c                 C   s   | j S r   )r  r   r   r   r   __len__  s   znumeric_range.__len__c                 C   sh   | j r| j}| j}| j}n
| j}| j}| j }|| }|| jkr"dS t||\}}t|t|| jk S Nr   )r  r  r  r  r  r  r  )r   r   r   r   r  r   r,  r   r   r   r    s   
znumeric_range._lenc                 C   s   t | j| j| jffS r   )r   r  r  r  r   r   r   r   
__reduce__  s   znumeric_range.__reduce__c                 C   s>   | j dkrd| jd| jdS d| jd| jd| j dS )Nr4   znumeric_range(r  r  )r  r  r  r   r   r   r   __repr__ 	  s   
znumeric_range.__repr__c                 C   s"   t t| d| j| j | j S r  )r   r   r  r  r  r   r   r   r   r   	  s
   znumeric_range.__reversed__c                 C   s   t || v S r   )r  rh  r   r   r   r   	  s   znumeric_range.countc                 C   s   | j r&| j|  kr| jk r%n n8t|| j | j\}}|| jkr%t|S n#| j|  kr2| jkrIn nt| j| | j \}}|| jkrIt|S t| d)Nz is not in numeric range)r  r  r  r  r  r  r  r   )r   re  r   r,  r   r   r   r   	  s   

znumeric_range.indexc                 C   s<   |dk r	|| j 7 }|dk s|| j krtd| j|| j  S )Nr   z'numeric range object index out of range)r  r   r  r  )r   r(  r   r   r   r  	  s
   
znumeric_range._get_by_indexN)r  r  r  r  r  r&  r  r   r   rN  r  r  r  r   r  r   r  r  r  r   r   r   r  r   r   r   r   r   S  s&    3

r   c                    s<   t    s
tdS |du rt nt|} fdd|D S )a  Cycle through the items from *iterable* up to *n* times, yielding
    the number of completed cycles along with each item. If *n* is omitted the
    process repeats indefinitely.

    >>> list(count_cycle('AB', 3))
    [(0, 'A'), (0, 'B'), (1, 'A'), (1, 'B'), (2, 'A'), (2, 'B')]

    r   Nc                 3   s"    | ]} D ]}||fV  qqd S r   r   )r3  r(  r   r  r   r   r:  4	  r  zcount_cycle.<locals>.<genexpr>)r%  r   r   r&  )r   r   counterr   r  r   rR   '	  s
   	rR   c                 c   s    t | }zt|}W n
 ty   Y dS w zt D ]}|}t|}|dkd|fV  qW dS  ty?   |dkd|fV  Y dS w )aH  Yield 3-tuples of the form ``(is_first, is_last, item)``.

    >>> list(mark_ends('ABC'))
    [(True, False, 'A'), (False, False, 'B'), (False, True, 'C')]

    Use this when looping over an iterable to take special action on its first
    and/or last items:

    >>> iterable = ['Header', 100, 200, 'Footer']
    >>> total = 0
    >>> for is_first, is_last, item in mark_ends(iterable):
    ...     if is_first:
    ...         continue  # Skip the header
    ...     if is_last:
    ...         continue  # Skip the footer
    ...     total += item
    >>> print(total)
    300
    Nr   FT)r   r   r   r   )r   r"  br(  ar   r   r   ry   7	  s    
ry   c                 C   sJ   |du rt t t|| S |dk rtdt| |td}t t t||S )a  Yield the index of each item in *iterable* for which *pred* returns
    ``True``.

    *pred* defaults to :func:`bool`, which will select truthy items:

        >>> list(locate([0, 1, 1, 0, 1, 0, 0]))
        [1, 2, 4]

    Set *pred* to a custom function to, e.g., find the indexes for a particular
    item.

        >>> list(locate(['a', 'b', 'c', 'b'], lambda x: x == 'b'))
        [1, 3]

    If *window_size* is given, then the *pred* function will be called with
    that many items. This enables searching for sub-sequences:

        >>> iterable = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
        >>> pred = lambda *args: args == (1, 2, 3)
        >>> list(locate(iterable, pred=pred, window_size=3))
        [1, 5, 9]

    Use with :func:`seekable` to find indexes and then retrieve the associated
    items:

        >>> from itertools import count
        >>> from more_itertools import seekable
        >>> source = (3 * n + 1 if (n % 2) else n // 2 for n in count())
        >>> it = seekable(source)
        >>> pred = lambda x: x > 100
        >>> indexes = locate(it, pred=pred)
        >>> i = next(indexes)
        >>> it.seek(i)
        >>> next(it)
        106

    Nr4   zwindow size must be at least 1rU  )r   r   r   r   r   r5   r   )r   r  window_sizer"  r   r   r   rr   \	  s   &rr   c                 C   s   dd t tt|  D S )zYield elements of the longest common prefix amongst given *iterables*.

    >>> ''.join(longest_common_prefix(['abcd', 'abc', 'abf']))
    'ab'

    c                 s   s    | ]}|d  V  qdS )r   Nr   )r3  cr   r   r   r:  	      z(longest_common_prefix.<locals>.<genexpr>)r   r?   r  ri  r   r   r   rs   	  s   rs   c                 C   s
   t || S )a  Yield the items from *iterable*, but strip any from the beginning
    for which *pred* returns ``True``.

    For example, to remove a set of items from the start of an iterable:

        >>> iterable = (None, False, None, 1, 2, None, 3, False, None)
        >>> pred = lambda x: x in {None, False, ''}
        >>> list(lstrip(iterable, pred))
        [1, 2, None, 3, False, None]

    This function is analogous to to :func:`str.lstrip`, and is essentially
    an wrapper for :func:`itertools.dropwhile`.

    )r   r   r  r   r   r   rt   	  s   
rt   c                 c   sH    g }|j }|j}| D ]}||r|| q|E dH  |  |V  qdS )a  Yield the items from *iterable*, but strip any from the end
    for which *pred* returns ``True``.

    For example, to remove a set of items from the end of an iterable:

        >>> iterable = (None, False, None, 1, 2, None, 3, False, None)
        >>> pred = lambda x: x in {None, False, ''}
        >>> list(rstrip(iterable, pred))
        [None, False, None, 1, 2, None, 3]

    This function is analogous to :func:`str.rstrip`.

    N)r   clear)r   r  cachecache_appendcache_clearr   r   r   r   r   	  s   

r   c                 C   s   t t| ||S )a  Yield the items from *iterable*, but strip any from the
    beginning and end for which *pred* returns ``True``.

    For example, to remove a set of items from both ends of an iterable:

        >>> iterable = (None, False, None, 1, 2, None, 3, False, None)
        >>> pred = lambda x: x in {None, False, ''}
        >>> list(strip(iterable, pred))
        [1, 2, None, 3]

    This function is analogous to :func:`str.strip`.

    )r   rt   r  r   r   r   r   	  s   r   c                   @   0   e Zd ZdZdd Zdd Zdd Zdd	 Zd
S )rm   a  An extension of :func:`itertools.islice` that supports negative values
    for *stop*, *start*, and *step*.

        >>> iterable = iter('abcdefgh')
        >>> list(islice_extended(iterable, -4, -1))
        ['e', 'f', 'g']

    Slices with negative values require some caching of *iterable*, but this
    function takes care to minimize the amount of memory required.

    For example, you can use a negative step with an infinite iterator:

        >>> from itertools import count
        >>> list(islice_extended(count(), 110, 99, -2))
        [110, 108, 106, 104, 102, 100]

    You can also use slice notation directly:

        >>> iterable = map(str, count())
        >>> it = islice_extended(iterable)[10:20:2]
        >>> list(it)
        ['10', '12', '14', '16', '18']

    c                 G   s*   t |}|rt|t| | _d S || _d S r   )r   _islice_helperr  	_iterable)r   r   r  r"  r   r   r   r   	  s   
zislice_extended.__init__c                 C   r   r   r   r   r   r   r   r   	  r   zislice_extended.__iter__c                 C   
   t | jS r   )r   r  r   r   r   r   r   	     
zislice_extended.__next__c                 C   s"   t |trtt| j|S td)Nz4islice_extended.__getitem__ argument must be a slice)r   r  rm   r  r  r   )r   rb  r   r   r   r  	  s   
zislice_extended.__getitem__N)r  r  r  r  r   r   r   r  r   r   r   r   rm   	  s    rm   c                 c   s   |j }|j}|jdkrtd|jpd}|dkr|d u rdn|}|dk rstt| d| d}|r7|d d nd}t|| d}|d u rG|}n|dkrQt||}nt|| d}|| }	|	dkrbd S t|d|	|D ]\}
}|V  qid S |d ur|dk rt	t| ||d  tt| | | d}t| D ]\}
}|
 }|
| dkr|V  || qd S t| |||E d H  d S |d u rdn|}|d ur	|dk r	| d }	tt| d|	d}|r|d d nd}|dk r||}}n
t|| dd }}t|||| D ]\}
}|V  qd S |d ur|d }t	t| ||d  |dk r%|}d }	n|d u r1d }|d }	nd }|| }	|	dkr>d S tt| |	}||d | E d H  d S )Nr   z1step argument must be a non-zero integer or None.r4   r   r   )r   r   r   r   r   ru  r   r   r   r   r   r   r   )r"  sr   r   r   r  len_iterr(  r)  r   r   r   cached_itemmr   r   r   r  
  sv   







r  c                 C   s*   zt | W S  ty   t t|  Y S w )a  An extension of :func:`reversed` that supports all iterables, not
    just those which implement the ``Reversible`` or ``Sequence`` protocols.

        >>> print(*always_reversible(x for x in range(3)))
        2 1 0

    If the iterable is already reversible, this function returns the
    result of :func:`reversed()`. If the iterable is not reversible,
    this function will cache the remaining items in the iterable and
    yield them in reverse order, which may require significant storage.
    )r   r   r   r  r   r   r   rF   a
  s
   
rF   c                 C   r   r   r   r^  r   r   r   r   s
  r_  r   c                 #   s8    t t|  fdddD ]\}}ttd|V  qdS )a  Yield groups of consecutive items using :func:`itertools.groupby`.
    The *ordering* function determines whether two items are adjacent by
    returning their position.

    By default, the ordering function is the identity function. This is
    suitable for finding runs of numbers:

        >>> iterable = [1, 10, 11, 12, 20, 30, 31, 32, 33, 40]
        >>> for group in consecutive_groups(iterable):
        ...     print(list(group))
        [1]
        [10, 11, 12]
        [20]
        [30, 31, 32, 33]
        [40]

    For finding runs of adjacent letters, try using the :meth:`index` method
    of a string of letters:

        >>> from string import ascii_lowercase
        >>> iterable = 'abcdfgilmnop'
        >>> ordering = ascii_lowercase.index
        >>> for group in consecutive_groups(iterable, ordering):
        ...     print(list(group))
        ['a', 'b', 'c', 'd']
        ['f', 'g']
        ['i']
        ['l', 'm', 'n', 'o', 'p']

    Each group of consecutive items is an iterator that shares it source with
    *iterable*. When an an output group is advanced, the previous group is
    no longer available unless its elements are copied (e.g., into a ``list``).

        >>> iterable = [1, 2, 11, 12, 21, 22]
        >>> saved_groups = []
        >>> for group in consecutive_groups(iterable):
        ...     saved_groups.append(list(group))  # Copy group elements
        >>> saved_groups
        [[1, 2], [11, 12], [21, 22]]

    c                    s   | d  | d  S r   r   r^  orderingr   r   r   
  rG  z$consecutive_groups.<locals>.<lambda>rb  r4   N)r   ru  r   r,   )r   r  r5  r  r   r  r   rO   s
  s   *rO   )initialc                C   sT   t | \}}zt|g}W n ty   tg  Y S w |dur!g }t|t|||S )a  This function is the inverse of :func:`itertools.accumulate`. By default
    it will compute the first difference of *iterable* using
    :func:`operator.sub`:

        >>> from itertools import accumulate
        >>> iterable = accumulate([0, 1, 2, 3, 4])  # produces 0, 1, 3, 6, 10
        >>> list(difference(iterable))
        [0, 1, 2, 3, 4]

    *func* defaults to :func:`operator.sub`, but other functions can be
    specified. They will be applied as follows::

        A, B, C, D, ... --> A, func(B, A), func(C, B), func(D, C), ...

    For example, to do progressive division:

        >>> iterable = [1, 2, 6, 24, 120]
        >>> func = lambda x, y: x // y
        >>> list(difference(iterable, func))
        [1, 2, 3, 4, 5]

    If the *initial* keyword is set, the first element will be skipped when
    computing successive differences.

        >>> it = [10, 11, 13, 16]  # from accumulate([1, 2, 3], initial=10)
        >>> list(difference(it, initial=10))
        [1, 2, 3]

    N)r   r   r   r   r   r   )r   r  r  r  r  ra   r   r   r   rU   
  s   rU   c                   @   r  )rB   aS  Return a read-only view of the sequence object *target*.

    :class:`SequenceView` objects are analogous to Python's built-in
    "dictionary view" types. They provide a dynamic view of a sequence's items,
    meaning that when the sequence updates, so does the view.

        >>> seq = ['0', '1', '2']
        >>> view = SequenceView(seq)
        >>> view
        SequenceView(['0', '1', '2'])
        >>> seq.append('3')
        >>> view
        SequenceView(['0', '1', '2', '3'])

    Sequence views support indexing, slicing, and length queries. They act
    like the underlying sequence, except they don't allow assignment:

        >>> view[1]
        '1'
        >>> view[1:-1]
        ['1', '2']
        >>> len(view)
        4

    Sequence views are useful as an alternative to copying, as they don't
    require (much) extra storage.

    c                 C   s   t |tst|| _d S r   )r   r   r   _target)r   targetr   r   r   r   
  s   

zSequenceView.__init__c                 C   s
   | j | S r   )r  )r   r   r   r   r   r  
  r  zSequenceView.__getitem__c                 C   r  r   )r   r  r   r   r   r   r  
  r  zSequenceView.__len__c                 C   s   | j j d| jdS )N(r  )	__class__r  r  r   r   r   r   r  
  r   zSequenceView.__repr__N)r  r  r  r  r   r  r  r  r   r   r   r   rB   
  s    rB   c                   @   sV   e Zd ZdZdddZdd Zdd Zd	d
 ZefddZ	dd Z
dd Zdd ZdS )r   a  Wrap an iterator to allow for seeking backward and forward. This
    progressively caches the items in the source iterable so they can be
    re-visited.

    Call :meth:`seek` with an index to seek to that position in the source
    iterable.

    To "reset" an iterator, seek to ``0``:

        >>> from itertools import count
        >>> it = seekable((str(n) for n in count()))
        >>> next(it), next(it), next(it)
        ('0', '1', '2')
        >>> it.seek(0)
        >>> next(it), next(it), next(it)
        ('0', '1', '2')

    You can also seek forward:

        >>> it = seekable((str(n) for n in range(20)))
        >>> it.seek(10)
        >>> next(it)
        '10'
        >>> it.seek(20)  # Seeking past the end of the source isn't a problem
        >>> list(it)
        []
        >>> it.seek(0)  # Resetting works even after hitting the end
        >>> next(it)
        '0'

    Call :meth:`relative_seek` to seek relative to the source iterator's
    current position.

        >>> it = seekable((str(n) for n in range(20)))
        >>> next(it), next(it), next(it)
        ('0', '1', '2')
        >>> it.relative_seek(2)
        >>> next(it)
        '5'
        >>> it.relative_seek(-3)  # Source is at '6', we move back to '3'
        >>> next(it)
        '3'
        >>> it.relative_seek(-3)  # Source is at '4', we move back to '1'
        >>> next(it)
        '1'


    Call :meth:`peek` to look ahead one item without advancing the iterator:

        >>> it = seekable('1234')
        >>> it.peek()
        '1'
        >>> list(it)
        ['1', '2', '3', '4']
        >>> it.peek(default='empty')
        'empty'

    Before the iterator is at its end, calling :func:`bool` on it will return
    ``True``. After it will return ``False``:

        >>> it = seekable('5678')
        >>> bool(it)
        True
        >>> list(it)
        ['5', '6', '7', '8']
        >>> bool(it)
        False

    You may view the contents of the cache with the :meth:`elements` method.
    That returns a :class:`SequenceView`, a view that updates automatically:

        >>> it = seekable((str(n) for n in range(10)))
        >>> next(it), next(it), next(it)
        ('0', '1', '2')
        >>> elements = it.elements()
        >>> elements
        SequenceView(['0', '1', '2'])
        >>> next(it)
        '3'
        >>> elements
        SequenceView(['0', '1', '2', '3'])

    By default, the cache grows as the source iterable progresses, so beware of
    wrapping very large or infinite iterables. Supply *maxlen* to limit the
    size of the cache (this of course limits how far back you can seek).

        >>> from itertools import count
        >>> it = seekable((str(n) for n in count()), maxlen=2)
        >>> next(it), next(it), next(it), next(it)
        ('0', '1', '2', '3')
        >>> list(it.elements())
        ['2', '3']
        >>> it.seek(0)
        >>> next(it), next(it), next(it), next(it)
        ('2', '3', '4', '5')
        >>> next(it)
        '6'

    Nc                 C   s0   t || _|d u rg | _ntg || _d | _d S r   )r   _sourcer   r   _index)r   r   r   r   r   r   r   _  s
   

zseekable.__init__c                 C   r   r   r   r   r   r   r   r   g  r   zseekable.__iter__c                 C   s`   | j d ur#z| j| j  }W n ty   d | _ Y n
w |  j d7  _ |S t| j}| j| |S r  )r   r   r   r   r  r   r   r   r   r   r   r   j  s   


zseekable.__next__c                 C   r   r   r   r   r   r   r   r   x  r   zseekable.__bool__c                 C   sV   zt | }W n ty   |tu r | Y S w | jd u r"t| j| _|  jd8  _|S r  )r   r   r5   r   r   r   )r   r   peekedr   r   r   r     s   
zseekable.peekc                 C   r  r   )rB   r   r   r   r   r   elements  r  zseekable.elementsc                 C   s.   || _ |t| j }|dkrt| | d S d S r  )r   r   r   r8   )r   r   	remainderr   r   r   seek  s
   zseekable.seekc                 C   s0   | j d u rt| j| _ | t| j | d d S r  )r   r   r   r  r   )r   r   r   r   r   relative_seek  s   
zseekable.relative_seekr   )r  r  r  r  r   r   r   r   r5   r   r  r  r  r   r   r   r   r   
  s    
dr   c                   @   s(   e Zd ZdZedd Zedd ZdS )r   a  
    :func:`run_length.encode` compresses an iterable with run-length encoding.
    It yields groups of repeated items with the count of how many times they
    were repeated:

        >>> uncompressed = 'abbcccdddd'
        >>> list(run_length.encode(uncompressed))
        [('a', 1), ('b', 2), ('c', 3), ('d', 4)]

    :func:`run_length.decode` decompresses an iterable that was previously
    compressed with run-length encoding. It yields the items of the
    decompressed iterable:

        >>> compressed = [('a', 1), ('b', 2), ('c', 3), ('d', 4)]
        >>> list(run_length.decode(compressed))
        ['a', 'b', 'b', 'c', 'c', 'c', 'd', 'd', 'd', 'd']

    c                 C   s   dd t | D S )Nc                 s   s     | ]\}}|t |fV  qd S r   )rg   r  r   r   r   r:    r  z$run_length.encode.<locals>.<genexpr>r  r  r   r   r   encode  s   zrun_length.encodec                 C   s   t tt| S r   )r   r   r   r   r  r   r   r   decode  s   zrun_length.decodeN)r  r  r  r  staticmethodr  r  r   r   r   r   r     s    
r   c                 C   s   t tt|| |d |kS )a  Return ``True`` if exactly ``n`` items in the iterable are ``True``
    according to the *predicate* function.

        >>> exactly_n([True, True, False], 2)
        True
        >>> exactly_n([True, True, False], 1)
        False
        >>> exactly_n([0, 1, 2, 3, 4, 5], 3, lambda x: x < 3)
        True

    The iterable will be advanced until ``n + 1`` truthy items are encountered,
    so avoid calling it on infinite iterables.

    r4   )rg   r   rM  )r   r   r  r   r   r   r^     s   r^   c                 c   sj    t | }|dkrtd|| | }t|}|t|| }td|D ]}|| t|V  q&dS )a  Yield the circular shifts of *iterable*.

    >>> list(circular_shifts(range(4)))
    [(0, 1, 2, 3), (1, 2, 3, 0), (2, 3, 0, 1), (3, 0, 1, 2)]

    Set *steps* to the number of places to rotate to the left
    (or to the right if negative).  Defaults to 1.

    >>> list(circular_shifts(range(4), 2))
    [(0, 1, 2, 3), (2, 3, 0, 1)]

    >>> list(circular_shifts(range(4), -1))
    [(0, 1, 2, 3), (3, 0, 1, 2), (2, 3, 0, 1), (1, 2, 3, 0)]

    r   z"Steps should be a non-zero integerN)r   r   rotater   mathgcdr   r%  )r   stepsbufferr   rX  r   r   r   rK     s   

rK   c                    s    fdd}|S )a  Return a decorator version of *wrapping_func*, which is a function that
    modifies an iterable. *result_index* is the position in that function's
    signature where the iterable goes.

    This lets you use itertools on the "production end," i.e. at function
    definition. This can augment what the function returns without changing the
    function's code.

    For example, to produce a decorator version of :func:`chunked`:

        >>> from more_itertools import chunked
        >>> chunker = make_decorator(chunked, result_index=0)
        >>> @chunker(3)
        ... def iter_range(n):
        ...     return iter(range(n))
        ...
        >>> list(iter_range(9))
        [[0, 1, 2], [3, 4, 5], [6, 7, 8]]

    To only allow truthy items to be returned:

        >>> truth_serum = make_decorator(filter, result_index=1)
        >>> @truth_serum(bool)
        ... def boolean_test():
        ...     return [0, 1, '', ' ', False, True]
        ...
        >>> list(boolean_test())
        [1, ' ', True]

    The :func:`peekable` and :func:`seekable` wrappers make for practical
    decorators:

        >>> from more_itertools import peekable
        >>> peekable_function = make_decorator(peekable)
        >>> @peekable_function()
        ... def str_range(*args):
        ...     return (str(x) for x in range(*args))
        ...
        >>> it = str_range(1, 20, 2)
        >>> next(it), next(it), next(it)
        ('1', '3', '5')
        >>> it.peek()
        '7'
        >>> next(it)
        '7'

    c                     s    fdd}|S )Nc                    s    fdd}|S )Nc                     s0    | i |}t }|| |i S r   )r   insert)r  r	  resultwrapping_args_)fresult_indexwrapping_argswrapping_funcwrapping_kwargsr   r   inner_wrapper  s   zOmake_decorator.<locals>.decorator.<locals>.outer_wrapper.<locals>.inner_wrapperr   )r  r  )r  r  r  r  )r  r   outer_wrapper  s   z8make_decorator.<locals>.decorator.<locals>.outer_wrapperr   )r  r  r  r  r  )r  r  r   	decorator  s   	z!make_decorator.<locals>.decoratorr   )r  r  r  r   r  r   ru     s   3ru   c           	      C   st   |du rdd n|}t t}| D ]}||}||}|| | q|dur5| D ]
\}}||||< q*d|_|S )a  Return a dictionary that maps the items in *iterable* to categories
    defined by *keyfunc*, transforms them with *valuefunc*, and
    then summarizes them by category with *reducefunc*.

    *valuefunc* defaults to the identity function if it is unspecified.
    If *reducefunc* is unspecified, no summarization takes place:

        >>> keyfunc = lambda x: x.upper()
        >>> result = map_reduce('abbccc', keyfunc)
        >>> sorted(result.items())
        [('A', ['a']), ('B', ['b', 'b']), ('C', ['c', 'c', 'c'])]

    Specifying *valuefunc* transforms the categorized items:

        >>> keyfunc = lambda x: x.upper()
        >>> valuefunc = lambda x: 1
        >>> result = map_reduce('abbccc', keyfunc, valuefunc)
        >>> sorted(result.items())
        [('A', [1]), ('B', [1, 1]), ('C', [1, 1, 1])]

    Specifying *reducefunc* summarizes the categorized items:

        >>> keyfunc = lambda x: x.upper()
        >>> valuefunc = lambda x: 1
        >>> reducefunc = sum
        >>> result = map_reduce('abbccc', keyfunc, valuefunc, reducefunc)
        >>> sorted(result.items())
        [('A', 1), ('B', 2), ('C', 3)]

    You may want to filter the input iterable before applying the map/reduce
    procedure:

        >>> all_items = range(30)
        >>> items = [x for x in all_items if 10 <= x <= 20]  # Filter
        >>> keyfunc = lambda x: x % 2  # Evens map to 0; odds to 1
        >>> categories = map_reduce(items, keyfunc=keyfunc)
        >>> sorted(categories.items())
        [(0, [10, 12, 14, 16, 18, 20]), (1, [11, 13, 15, 17, 19])]
        >>> summaries = map_reduce(items, keyfunc=keyfunc, reducefunc=sum)
        >>> sorted(summaries.items())
        [(0, 90), (1, 75)]

    Note that all items in the iterable are gathered into a list before the
    summarization step, which may require significant storage.

    The returned object is a :obj:`collections.defaultdict` with the
    ``default_factory`` set to ``None``, such that it behaves like a normal
    dictionary.

    Nc                 S   r   r   r   r^  r   r   r   r   ]  r_  zmap_reduce.<locals>.<lambda>)r   r   r   r   default_factory)	r   r  r  r  r   r   rb  re  
value_listr   r   r   rx   *  s   3rx   c                    sV   |du r!zt |   fddtt| |D W S  ty    Y nw ttt| ||S )a  Yield the index of each item in *iterable* for which *pred* returns
    ``True``, starting from the right and moving left.

    *pred* defaults to :func:`bool`, which will select truthy items:

        >>> list(rlocate([0, 1, 1, 0, 1, 0, 0]))  # Truthy at 1, 2, and 4
        [4, 2, 1]

    Set *pred* to a custom function to, e.g., find the indexes for a particular
    item:

        >>> iterable = iter('abcb')
        >>> pred = lambda x: x == 'b'
        >>> list(rlocate(iterable, pred))
        [3, 1]

    If *window_size* is given, then the *pred* function will be called with
    that many items. This enables searching for sub-sequences:

        >>> iterable = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
        >>> pred = lambda *args: args == (1, 2, 3)
        >>> list(rlocate(iterable, pred=pred, window_size=3))
        [9, 5, 1]

    Beware, this function won't return anything for infinite iterables.
    If *iterable* is reversible, ``rlocate`` will reverse it and search from
    the right. Otherwise, it will search from the left and return the results
    in reverse order.

    See :func:`locate` to for other example applications.

    Nc                 3   s    | ]	} | d  V  qdS rY  r   rq  r  r   r   r:    rk  zrlocate.<locals>.<genexpr>)r   rr   r   r   r   )r   r  r  r   r  r   r   m  s   !r   c           	      c   s    |dk r	t dt|}t| tg|d  }t||}d}|D ],}|| r?|du s.||k r?|d7 }|E dH  t||d  q |rL|d turL|d V  q dS )aY  Yield the items from *iterable*, replacing the items for which *pred*
    returns ``True`` with the items from the iterable *substitutes*.

        >>> iterable = [1, 1, 0, 1, 1, 0, 1, 1]
        >>> pred = lambda x: x == 0
        >>> substitutes = (2, 3)
        >>> list(replace(iterable, pred, substitutes))
        [1, 1, 2, 3, 1, 1, 2, 3, 1, 1]

    If *count* is given, the number of replacements will be limited:

        >>> iterable = [1, 1, 0, 1, 1, 0, 1, 1, 0]
        >>> pred = lambda x: x == 0
        >>> substitutes = [None]
        >>> list(replace(iterable, pred, substitutes, count=2))
        [1, 1, None, 1, 1, None, 1, 1, 0]

    Use *window_size* to control the number of items passed as arguments to
    *pred*. This allows for locating and replacing subsequences.

        >>> iterable = [0, 1, 2, 5, 0, 1, 2, 5]
        >>> window_size = 3
        >>> pred = lambda *args: args == (0, 1, 2)  # 3 items passed to pred
        >>> substitutes = [3, 4] # Splice in these items
        >>> list(replace(iterable, pred, substitutes, window_size=window_size))
        [3, 4, 5, 3, 4, 5]

    r4   zwindow_size must be at least 1r   N)r   r%  r   r5   r   r8   )	r   r  substitutesr   r  r"  windowsr   wr   r   r   r     s$   


r   c                 #   sN    t |  t }ttd|D ]} fddtd| ||f D V  qdS )a"  Yield all possible order-preserving partitions of *iterable*.

    >>> iterable = 'abc'
    >>> for part in partitions(iterable):
    ...     print([''.join(p) for p in part])
    ['abc']
    ['a', 'bc']
    ['ab', 'c']
    ['a', 'b', 'c']

    This is unrelated to :func:`partition`.

    r4   c                    s   g | ]
\}} || qS r   r   )r3  r(  r)  sequencer   r   r4    rL  zpartitions.<locals>.<listcomp>r  N)r   r   r;   r&  r  )r   r   r(  r   r!  r   r     s   &r   c                 #   s    t | }t|}|dur|dk rtd||krdS dur!nd dur) n|  kr1dS fdd|du rWtd|d D ]}t fdd||E dH  qBdS t fd	d||E dH  dS )
a  
    Yield the set partitions of *iterable* into *k* parts. Set partitions are
    not order-preserving.

    >>> iterable = 'abc'
    >>> for part in set_partitions(iterable, 2):
    ...     print([''.join(p) for p in part])
    ['a', 'bc']
    ['ab', 'c']
    ['b', 'ac']


    If *k* is not given, every set partition is generated.

    >>> iterable = 'abc'
    >>> for part in set_partitions(iterable):
    ...     print([''.join(p) for p in part])
    ['abc']
    ['a', 'bc']
    ['ab', 'c']
    ['b', 'ac']
    ['a', 'b', 'c']

    if *min_size* and/or *max_size* are given, the minimum and/or maximum size
    per block in partition is set.

    >>> iterable = 'abc'
    >>> for part in set_partitions(iterable, min_size=2):
    ...     print([''.join(p) for p in part])
    ['abc']
    >>> for part in set_partitions(iterable, max_size=2):
    ...     print([''.join(p) for p in part])
    ['a', 'bc']
    ['ab', 'c']
    ['b', 'ac']
    ['a', 'b', 'c']

    Nr4   z6Can't partition in a negative or zero number of groupsr   c                 3   s    t | }|dkr| gV  d S ||krdd | D V  d S | ^}} ||d D ]	}|gg|V  q( ||D ]"}tt |D ]}|d | |g||  g ||d d   V  q?q7d S )Nr4   c                 S   s   g | ]}|gqS r   r   )r3  r  r   r   r   r4  $  s    zAset_partitions.<locals>.set_partitions_helper.<locals>.<listcomp>)r   r&  )rZ  r5  r   r   Mr   r(  )set_partitions_helperr   r   r$    s   0z-set_partitions.<locals>.set_partitions_helperc                       t  fdd| D S )Nc                 3   ,    | ]}t |  ko kn  V  qd S r   rl  r3  bkmax_sizemin_sizer   r   r:  0     * 3set_partitions.<locals>.<lambda>.<locals>.<genexpr>allr   r)  r   r   r   0  rr  z set_partitions.<locals>.<lambda>c                    r%  )Nc                 3   r&  r   rl  r'  r)  r   r   r:  5  r,  r-  r.  r0  r)  r   r   r   5  rr  )r   r   r   r&  rM  )r   r5  r+  r*  rZ  r   r   )r*  r+  r$  r   r     s4   'r   c                   @   (   e Zd ZdZdd Zdd Zdd ZdS )	r   a]  
    Yield items from *iterable* until *limit_seconds* have passed.
    If the time limit expires before all items have been yielded, the
    ``timed_out`` parameter will be set to ``True``.

    >>> from time import sleep
    >>> def generator():
    ...     yield 1
    ...     yield 2
    ...     sleep(0.2)
    ...     yield 3
    >>> iterable = time_limited(0.1, generator())
    >>> list(iterable)
    [1, 2]
    >>> iterable.timed_out
    True

    Note that the time is checked before each item is yielded, and iteration
    stops if  the time elapsed is greater than *limit_seconds*. If your time
    limit is 1 second, but it takes 2 seconds to generate the first item from
    the iterable, the function will run for 2 seconds and not yield anything.
    As a special case, when *limit_seconds* is zero, the iterator never
    returns anything.

    c                 C   s2   |dk rt d|| _t|| _t | _d| _d S )Nr   zlimit_seconds must be positiveF)r   limit_secondsr   r  r3   _start_time	timed_out)r   r2  r   r   r   r   r   U  s   

ztime_limited.__init__c                 C   r   r   r   r   r   r   r   r   ]  r   ztime_limited.__iter__c                 C   s>   | j dkr
d| _tt| j}t | j | j krd| _t|S )Nr   T)r2  r4  r   r   r  r3   r3  r  r   r   r   r   `  s   

ztime_limited.__next__Nr  r  r  r  r   r   r   r   r   r   r   r   :  s
    r   c                 C   sB   t | }|D ]}|D ]}d|d|d}|pt||  S |S )a+  If *iterable* has only one item, return it.
    If it has zero items, return *default*.
    If it has more than one item, raise the exception given by *too_long*,
    which is ``ValueError`` by default.

    >>> only([], default='missing')
    'missing'
    >>> only([1])
    1
    >>> only([1, 2])  # doctest: +IGNORE_EXCEPTION_DETAIL
    Traceback (most recent call last):
    ...
    ValueError: Expected exactly one item in iterable, but got 1, 2,
     and perhaps more.'
    >>> only([1, 2], too_long=TypeError)  # doctest: +IGNORE_EXCEPTION_DETAIL
    Traceback (most recent call last):
    ...
    TypeError

    Note that :func:`only` attempts to advance *iterable* twice to ensure there
    is only one item.  See :func:`spy` or :func:`peekable` to check
    iterable contents less destructively.

    r  r  r  r  )r   r   r  r   ra   r  r  r   r   r   r   l  s   r   c                    s8   t   t| | fdd}d fdd	}| |fS )Nc                   3   s>    t t 	  r  V  ntV  q1 sw   Y  d S r   )r   r   r   r   r   r  r   r   r   	generator  s   

z_ichunk.<locals>.generatorr4   c                    sL   | d u r   t S | t  }|dkr  t| t| t S r  )r   r   r   r   )r   to_cacher6  r   r   materialize_next  s   
z!_ichunk.<locals>.materialize_nextrH  )r   r   )r   r   r7  r9  r   r6  r   _ichunk  s
   

r:  c                 c   s4    t | } 	 t| |\}}| sdS |V  |d q)a  Break *iterable* into sub-iterables with *n* elements each.
    :func:`ichunked` is like :func:`chunked`, but it yields iterables
    instead of lists.

    If the sub-iterables are read in order, the elements of *iterable*
    won't be stored in memory.
    If they are read out of order, :func:`itertools.tee` is used to cache
    elements as necessary.

    >>> from itertools import count
    >>> all_chunks = ichunked(count(), 4)
    >>> c_1, c_2, c_3 = next(all_chunks), next(all_chunks), next(all_chunks)
    >>> list(c_2)  # c_1's elements have been cached; c_3's haven't been
    [4, 5, 6, 7]
    >>> list(c_1)
    [0, 1, 2, 3]
    >>> list(c_3)
    [8, 9, 10, 11]

    TN)r   r:  )r   r   r   r9  r   r   r   rd     s   rd   c                  G   s   t ttt| dt iS )a  Return ``True`` if all given *iterables* are equal to each other,
    which means that they contain the same elements in the same order.

    The function is useful for comparing iterables of different data types
    or iterables that do not support equality checks.

    >>> iequals("abc", ['a', 'b', 'c'], ('a', 'b', 'c'), iter("abc"))
    True

    >>> iequals("abc", "acb")
    False

    Not to be confused with :func:`all_equal`, which checks whether all
    elements of iterable are equal to each other.

    rU  )r/  r   r?   r   objectri  r   r   r   re     s   re   c                 c   s    |dk r	t d|dkrdV  dS t| }tt|tddg}dg| }d}|rtz
t|d \}}W n tyE   |  |d8 }Y q(w |||< |d |krVt|V  n|tt||d d |d tdd |d7 }|s*dS dS )aB  Yield the distinct combinations of *r* items taken from *iterable*.

        >>> list(distinct_combinations([0, 0, 1], 2))
        [(0, 0), (0, 1)]

    Equivalent to ``set(combinations(iterable))``, except duplicates are not
    generated and thrown away. For larger input sequences this is much more
    efficient.

    r   zr must be non-negativer   Nr4   r  r   )	r   r%  r>   ru  r,   r   r   popr   )r   r,  rR  
generatorscurrent_combor  cur_idxr   r   r   r   rV     s:   
rV   c              	   g   s6    |D ]}z| | W n	 |y   Y qw |V  qdS )a  Yield the items from *iterable* for which the *validator* function does
    not raise one of the specified *exceptions*.

    *validator* is called for each item in *iterable*.
    It should be a function that accepts one argument and raises an exception
    if that item is not valid.

    >>> iterable = ['1', '2', 'three', '4', None]
    >>> list(filter_except(int, iterable, ValueError, TypeError))
    ['1', '2', '4']

    If an exception other than one given by *exceptions* is raised by
    *validator*, it is raised like normal.
    Nr   )rc  r   
exceptionsr   r   r   r   r_     s   r_   c              	   g   s0    |D ]}z| |V  W q |y   Y qw dS )a  Transform each item from *iterable* with *function* and yield the
    result, unless *function* raises one of the specified *exceptions*.

    *function* is called to transform each item in *iterable*.
    It should accept one argument.

    >>> iterable = ['1', '2', 'three', '4', None]
    >>> list(map_except(int, iterable, ValueError, TypeError))
    [1, 2, 4]

    If an exception other than one given by *exceptions* is raised by
    *function*, it is raised like normal.
    Nr   )functionr   r@  r   r   r   r   rv   '  s   rv   c                 C   r   r   r   r^  r   r   r   r   <  r_  c                 c   s*    | D ]}||r||n||V  qdS )a  Evaluate each item from *iterable* using *pred*. If the result is
    equivalent to ``True``, transform the item with *func* and yield it.
    Otherwise, transform the item with *func_else* and yield it.

    *pred*, *func*, and *func_else* should each be functions that accept
    one argument. By default, *func_else* is the identity function.

    >>> from math import sqrt
    >>> iterable = list(range(-5, 5))
    >>> iterable
    [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4]
    >>> list(map_if(iterable, lambda x: x > 3, lambda x: 'toobig'))
    [-5, -4, -3, -2, -1, 0, 1, 2, 3, 'toobig']
    >>> list(map_if(iterable, lambda x: x >= 0,
    ... lambda x: f'{sqrt(x):.2f}', lambda x: None))
    [None, None, None, None, None, '0.00', '1.00', '1.41', '1.73', '2.00']
    Nr   )r   r  r  	func_elser   r   r   r   rw   <  s   rw   c                 C   s   t t| |}|rt||k rtdd}tt( 	 |ttt | 9 }t	tt t
|  }tt| |d }||t|< q1 sDw   Y  t| |S )NSample larger than population      ?)r   r   r   r   r   r   r   r"   r(   r    r#   r   r)   r*   )r   r5  r   	reservoirWskiprI  r   r   r   _sample_unweightedR  s   
rH  c                 C   s   dd |D }t |t|| }|rt||k rtdt| |d \}}tt | }t|| D ]8\}	}
|	|kre|d \}}t|	| }t|d}t||	 }t	|||
f |d \}}tt | }q1||	8 }q1dd |D }t
| |S )Nc                 s   s    | ]
}t t | V  qd S r   )r"   r(   )r3  weightr   r   r   r:  k  s    z#_sample_weighted.<locals>.<genexpr>rC  r   r4   c                 S   s   g | ]\}}|qS r   r   )r3  
weight_keyrI  r   r   r   r4    rG  z$_sample_weighted.<locals>.<listcomp>)r=   r  r   r   r   r"   r(   r   r+   r   r*   )r   r5  weightsr   weight_keysrE  smallest_weight_keyrX  weights_to_skiprI  rI  t_wr_2rJ  r   r   r   r   _sample_weightedf  s(   

rQ  c           	         s   d d fdd}t t g }t|D ]	}||d qW d    n1 s,w   Y  |r=t||k r=tdt t& d}	 |ttt | 9 }t	tt t
|  }|||t|< qE1 sjw   Y  t| |S )Nr   c                    s@   | d kr|  } t t  | d ks| d 8 S r  r  rm  rJ  rI  
population	remainingr   r   feed  s   z_sample_counted.<locals>.feedrC  rD  )r   r   r&  r   r   r   r   r"   r(   r    r#   r)   r*   )	rS  r5  rJ  r   rU  rE  rX  rF  rG  r   rR  r   _sample_counted  s,   

rV  )rJ  r   c                C   s   t | }|dk rtd|dkrg S |dur|durtd|dur-t |}t||||S |dur<t |}t||||S t|||S )a  Return a *k*-length list of elements chosen (without replacement)
    from the *iterable*. Similar to :func:`random.sample`, but works on
    iterables of unknown length.

    >>> iterable = range(100)
    >>> sample(iterable, 5)  # doctest: +SKIP
    [81, 60, 96, 16, 4]

    For iterables with repeated elements, you may supply *counts* to
    indicate the repeats.

    >>> iterable = ['a', 'b']
    >>> counts = [3, 4]  # Equivalent to 'a', 'a', 'a', 'b', 'b', 'b', 'b'
    >>> sample(iterable, k=3, counts=counts)  # doctest: +SKIP
    ['a', 'a', 'b']

    An iterable with *weights* may be given:

    >>> iterable = range(100)
    >>> weights = (i * i + 1 for i in range(100))
    >>> sampled = sample(iterable, 5, weights=weights)  # doctest: +SKIP
    [79, 67, 74, 66, 78]

    Weighted selections are made without replacement.
    After an element is selected, it is removed from the pool and the
    relative weights of the other elements increase (this
    does not match the behavior of :func:`random.sample`'s *counts*
    parameter). Note that *weights* may not be used with *counts*.

    If the length of *iterable* is less than *k*,
    ``ValueError`` is raised if *strict* is ``True`` and
    all elements are returned (in shuffled order) if *strict* is ``False``.

    By default, the `Algorithm L <https://w.wiki/ANrM>`__ reservoir sampling
    technique is used. When *weights* are provided,
    `Algorithm A-ExpJ <https://w.wiki/ANrS>`__ is used.
    r   zk must be non-negativeNz)weights and counts are mutually exclusive)r   r   r   rQ  rV  rH  )r   r5  rK  rJ  r   r   r   r   r   r     s   &r   c                 C   s`   |du r| nt || }t|\}}t|d |r||}}|r'tt t||S tt t|| S )a@  Returns ``True`` if the items of iterable are in sorted order, and
    ``False`` otherwise. *key* and *reverse* have the same meaning that they do
    in the built-in :func:`sorted` function.

    >>> is_sorted(['1', '2', '3', '4', '5'], key=int)
    True
    >>> is_sorted([5, 4, 3, 1, 2], reverse=True)
    False

    If *strict*, tests for strict sorting, that is, returns ``False`` if equal
    elements are found:

    >>> is_sorted([1, 2, 2])
    True
    >>> is_sorted([1, 2, 2], strict=True)
    False

    The function returns ``False`` after encountering the first out-of-order
    item, which means it may produce results that differ from the built-in
    :func:`sorted` function for objects with unusual comparison dynamics
    (like ``math.nan``). If there are no out-of-order items, the iterable is
    exhausted.
    N)r   r   r   r/  r0   r  )r   rb  r\  r   r"  r  r  r   r   r   rl     s   

&rl   c                   @   s   e Zd ZdS )rA   N)r  r  r  r   r   r   r   rA     s    rA   c                   @   sZ   e Zd ZdZdddZdd Zdd	 Zd
d Zdd Ze	dd Z
e	dd Zdd ZdS )rH   a  Convert a function that uses callbacks to an iterator.

    Let *func* be a function that takes a `callback` keyword argument.
    For example:

    >>> def func(callback=None):
    ...     for i, c in [(1, 'a'), (2, 'b'), (3, 'c')]:
    ...         if callback:
    ...             callback(i, c)
    ...     return 4


    Use ``with callback_iter(func)`` to get an iterator over the parameters
    that are delivered to the callback.

    >>> with callback_iter(func) as it:
    ...     for args, kwargs in it:
    ...         print(args)
    (1, 'a')
    (2, 'b')
    (3, 'c')

    The function will be called in a background thread. The ``done`` property
    indicates whether it has completed execution.

    >>> it.done
    True

    If it completes successfully, its return value will be available
    in the ``result`` property.

    >>> it.result
    4

    Notes:

    * If the function uses some keyword argument besides ``callback``, supply
      *callback_kwd*.
    * If it finished executing, but raised an exception, accessing the
      ``result`` property will raise the same exception.
    * If it hasn't finished executing, accessing the ``result``
      property from within the ``with`` block will raise ``RuntimeError``.
    * If it hasn't finished executing, accessing the ``result`` property from
      outside the ``with`` block will raise a
      ``more_itertools.AbortThread`` exception.
    * Provide *wait_seconds* to adjust how frequently the it is polled for
      output.

    callback皙?c                 C   s@   || _ || _d| _d | _|| _tdjjdd| _| 	 | _
d S )NFzconcurrent.futuresr4   )max_workers)_func_callback_kwd_aborted_future_wait_seconds
__import__futuresThreadPoolExecutor	_executor_reader	_iterator)r   r  callback_kwdwait_secondsr   r   r   r   D  s   zcallback_iter.__init__c                 C   r   r   r   r   r   r   r   	__enter__P  r   zcallback_iter.__enter__c                 C   s   d| _ | j  d S r]  )r\  rb  shutdown)r   exc_type	exc_value	tracebackr   r   r   __exit__S  s   zcallback_iter.__exit__c                 C   r   r   r   r   r   r   r   r   W  r   zcallback_iter.__iter__c                 C   r  r   )r   rd  r   r   r   r   r   Z  r  zcallback_iter.__next__c                 C   s   | j d u rdS | j  S r  )r]  doner   r   r   r   rm  ]  s   

zcallback_iter.donec                 C   s   | j std| j S )NzFunction has not yet completed)rm  RuntimeErrorr]  r  r   r   r   r   r  c  s   
zcallback_iter.resultc                 #   s    t    fdd}jjjfi j|i_	 z	 jjd}W n	 ty-   Y nw  	  |V  j
 r;nqg }	 z  }W n	 tyN   Y nw  	  || q?   |E d H  d S )Nc                     s    j rtd | |f d S )Nzcanceled by user)r\  rA   put)r  r	  r   r   r   r   rW  m  s   z'callback_iter._reader.<locals>.callbackT)timeout)r'   rb  submitrZ  r[  r]  getr^  r&   	task_donerm  
get_nowaitr   join)r   rW  r   rT  r   rp  r   rc  j  s>   

zcallback_iter._readerN)rW  rX  )r  r  r  r  r   rg  rl  r   r   propertyrm  r  rc  r   r   r   r   rH     s    
2

rH   c                 c   s    |dk r	t dt| }t|}||krt dt|| d D ]}|d| }||||  }||| d }|||fV  q!dS )a  
    Yield ``(beginning, middle, end)`` tuples, where:

    * Each ``middle`` has *n* items from *iterable*
    * Each ``beginning`` has the items before the ones in ``middle``
    * Each ``end`` has the items after the ones in ``middle``

    >>> iterable = range(7)
    >>> n = 3
    >>> for beginning, middle, end in windowed_complete(iterable, n):
    ...     print(beginning, middle, end)
    () (0, 1, 2) (3, 4, 5, 6)
    (0,) (1, 2, 3) (4, 5, 6)
    (0, 1) (2, 3, 4) (5, 6)
    (0, 1, 2) (3, 4, 5) (6,)
    (0, 1, 2, 3) (4, 5, 6) ()

    Note that *n* must be at least 0 and most equal to the length of
    *iterable*.

    This function will exhaust the iterable and may require significant
    storage.
    r   rS  zn must be <= len(seq)r4   N)r   r%  r   r&  )r   r   rT  r*  r(  	beginningmiddleendr   r   r   r     s   r   c              	   C   sx   t  }|j}g }|j}|rt|| n| D ]%}z||v rW  dS || W q ty9   ||v r3Y  dS || Y qw dS )a  
    Returns ``True`` if all the elements of *iterable* are unique (no two
    elements are equal).

        >>> all_unique('ABCB')
        False

    If a *key* function is specified, it will be used to make comparisons.

        >>> all_unique('ABCb')
        True
        >>> all_unique('ABCb', str.lower)
        False

    The function returns as soon as the first non-unique element is
    encountered. Iterables with a mix of hashable and unhashable items can
    be used, but the function will be slower for unhashable items.
    FT)rP  addr   r   r   )r   rb  seensetseenset_addseenlistseenlist_addrI  r   r   r   rD     s   rD   c                 G   s   t ttt|}t tt|}tt|}| dk r| |7 } d|   kr(|k s+t tg }t||D ]\}}|	|| |   | | } q2tt|S )a  Equivalent to ``list(product(*args))[index]``.

    The products of *args* can be ordered lexicographically.
    :func:`nth_product` computes the product at sort position *index* without
    computing the previous products.

        >>> nth_product(8, range(2), range(2), range(2), range(2))
        (1, 0, 0, 0)

    ``IndexError`` will be raised if the given *index* is invalid.
    r   )
r   r   r%  r   r   r
   r-   r   r  r   )r   r  poolsnsr  r  rR  r   r   r   r   r~     s   

r~   c           
      C   s  t | }t|}|du s||kr|t|}}nd|  kr#|k s&t tt||}|dks1J |dk r9||7 }d|  krD|k sGt tdg| }||k rX|t| | n|}td|d D ]#}t||\}}	d||   krv|k r~n n|	||| < |dkr nqatt	|j
|S )a'  Equivalent to ``list(permutations(iterable, r))[index]```

    The subsequences of *iterable* that are of length *r* where order is
    important can be ordered lexicographically. :func:`nth_permutation`
    computes the subsequence at sort position *index* directly, without
    computing the previous subsequences.

        >>> nth_permutation('ghijk', 2, 5)
        ('h', 'i')

    ``ValueError`` will be raised If *r* is negative or greater than the length
    of *iterable*.
    ``IndexError`` will be raised if the given *index* is invalid.
    Nr   r4   )r   r   r   r   r$   r   r&  r  r%  r   r<  )
r   r,  r   rR  r   r  r  r   dr(  r   r   r   r|     s4   

r|   c           	      C   s   t | }t|}|dk s||krtt|| d |}|dk r#||7 }|dk s+||kr-tg }d}|rb|d8 }|dkrYt|| d |}||k rIn|d8 }|d7 }||8 }|dks;|||  |s3t |S )ag  Equivalent to
    ``list(combinations_with_replacement(iterable, r))[index]``.


    The subsequences with repetition of *iterable* that are of length *r* can
    be ordered lexicographically. :func:`nth_combination_with_replacement`
    computes the subsequence at sort position *index* directly, without
    computing the previous subsequences with replacement.

        >>> nth_combination_with_replacement(range(5), 3, 5)
        (0, 1, 1)

    ``ValueError`` will be raised If *r* is negative or greater than the length
    of *iterable*.
    ``IndexError`` will be raised if the given *index* is invalid.
    r   r4   )r%  r   r   r   r   r   )	r   r,  r   rR  r   r  r  r(  	num_combsr   r   r   r   &  s0   r   c               	   g   sL    | D ] }t |ttfr|V  qz|E dH  W q ty#   |V  Y qw dS )a  Yield all arguments passed to the function in the same order in which
    they were passed. If an argument itself is iterable then iterate over its
    values.

        >>> list(value_chain(1, 2, 3, [4, 5, 6]))
        [1, 2, 3, 4, 5, 6]

    Binary and text strings are not considered iterable and are emitted
    as-is:

        >>> list(value_chain('12', '34', ['56', '78']))
        ['12', '34', '56', '78']

    Pre- or postpend a single element to an iterable:

        >>> list(value_chain(1, [2, 3, 4, 5, 6]))
        [1, 2, 3, 4, 5, 6]
        >>> list(value_chain([1, 2, 3, 4, 5], 6))
        [1, 2, 3, 4, 5, 6]

    Multiple levels of nesting are not flattened.

    N)r   r  r  r   )r  re  r   r   r   r   T  s   
r   c                 G   sV   d}t | |tdD ]\}}|tu s|tu rtdt|}|t| || }q	|S )a  Equivalent to ``list(product(*args)).index(element)``

    The products of *args* can be ordered lexicographically.
    :func:`product_index` computes the first index of *element* without
    computing the previous products.

        >>> product_index([8, 2], range(10), range(5))
        42

    ``ValueError`` will be raised if the given *element* isn't in the product
    of *args*.
    r   r  z element is not a product of args)r   r5   r   r%  r   r   )rI  r  r   r   rR  r   r   r   r   v  s   r   c                 C   s   t | } t| d\}}|du rdS g }t |}|D ]\}}||kr5|| t| d\}}|du r3 n|}qtdt||dfd\}}	d}
t t|ddD ]\}}|| }||kra|
t||7 }
qNt|d |d |
 S )a  Equivalent to ``list(combinations(iterable, r)).index(element)``

    The subsequences of *iterable* that are of length *r* can be ordered
    lexicographically. :func:`combination_index` computes the index of the
    first *element*, without computing the previous combinations.

        >>> combination_index('adf', 'abcdefg')
        10

    ``ValueError`` will be raised if the given *element* isn't one of the
    combinations of *iterable*.
    NNNr   z(element is not a combination of iterabler   r4   )r   )ru  r   r   r   rq   r   r   )rI  r   r5  r   indexesrR  r   r   tmprX  r   r(  r)  r   r   r   rM     s.   
rM   c                 C   s$  t | } t| }t| } t| d\}}|du rdS g }t |}t|D ]%\}}||krB|| t| d\}	}|	du r<n|	}||ks+|du rH nq#tdt|}dg| }
|D ]
}|
|  d7  < qXd}d}td|D ]#}||
|d  7 }|| d | | }|| }||kr|t||7 }ql|S )a0  Equivalent to
    ``list(combinations_with_replacement(iterable, r)).index(element)``

    The subsequences with repetition of *iterable* that are of length *r* can
    be ordered lexicographically. :func:`combination_with_replacement_index`
    computes the index of the first *element*, without computing the previous
    combinations with replacement.

        >>> combination_with_replacement_index('adf', 'abcdefg')
        20

    ``ValueError`` will be raised if the given *element* isn't one of the
    combinations with replacement of *iterable*.
    r  Nr   z9element is not a combination with replacement of iterabler4   )r%  r   ru  r   r   r   r&  r   )rI  r   lr5  r   r  rR  r   r   r  occupationsr   r   cumulative_sumr)  r(  r   r   r   rN     sH   

rN   c                 C   sL   d}t |}ttt|dd| D ]\}}||}|| | }||= q|S )a  Equivalent to ``list(permutations(iterable, r)).index(element)```

    The subsequences of *iterable* that are of length *r* where order is
    important can be ordered lexicographically. :func:`permutation_index`
    computes the index of the first *element* directly, without computing
    the previous permutations.

        >>> permutation_index([1, 3, 2], range(5))
        19

    ``ValueError`` will be raised if the given *element* isn't one of the
    permutations of *iterable*.
    r   r   )r   r  r&  r   r   )rI  r   r   rR  r(  r   r,  r   r   r   r     s   
r   c                   @   r1  )	rS   a  Wrap *iterable* and keep a count of how many items have been consumed.

    The ``items_seen`` attribute starts at ``0`` and increments as the iterable
    is consumed:

        >>> iterable = map(str, range(10))
        >>> it = countable(iterable)
        >>> it.items_seen
        0
        >>> next(it), next(it)
        ('0', '1')
        >>> list(it)
        ['2', '3', '4', '5', '6', '7', '8', '9']
        >>> it.items_seen
        10
    c                 C   s   t || _d| _d S r  )r   r   
items_seenr   r   r   r   r     s   

zcountable.__init__c                 C   r   r   r   r   r   r   r   r   !  r   zcountable.__iter__c                 C   s   t | j}|  jd7  _|S r  )r   r   r  r  r   r   r   r   $  s   
zcountable.__next__Nr5  r   r   r   r   rS     s
    rS   c                 c   s,   t | } |d |d  }tt| |}tt|j| |d|D ]}|d| V  |d|= q|s2dS t|}t||\}}||dkrDdnd }t||\}}||dkrUdnd }	|	d }
||
|  }||	 }|	dkr|td||	D ]}||||	  V  qp|
dkrt|||
D ]}||||
  V  qdS dS )a  Break *iterable* into lists of approximately length *n*.
    Items are distributed such the lengths of the lists differ by at most
    1 item.

    >>> iterable = [1, 2, 3, 4, 5, 6, 7]
    >>> n = 3
    >>> list(chunked_even(iterable, n))  # List lengths: 3, 2, 2
    [[1, 2, 3], [4, 5], [6, 7]]
    >>> list(chunked(iterable, n))  # List lengths: 3, 3, 1
    [[1, 2, 3], [4, 5, 6], [7]]

    r4   r$  Nr   )r   r   r   r   r   r   r  r&  )r   r   
min_bufferr  rX  lengthr   r,  	num_lists	full_sizepartial_sizenum_fullpartial_start_idxr(  r   r   r   rJ   +  s2   rJ   )scalar_typesr   c                 '   s     fdd}t |}|sdS dg| }g g }}t|D ]\}}	||	r*|	||< q|t|	 || q|s@t|V  dS |rDtnt}
|
| D ]}t||D ]\}||< qQt|V  qJdS )a  A version of :func:`zip` that "broadcasts" any scalar
    (i.e., non-iterable) items into output tuples.

    >>> iterable_1 = [1, 2, 3]
    >>> iterable_2 = ['a', 'b', 'c']
    >>> scalar = '_'
    >>> list(zip_broadcast(iterable_1, iterable_2, scalar))
    [(1, 'a', '_'), (2, 'b', '_'), (3, 'c', '_')]

    The *scalar_types* keyword argument determines what types are considered
    scalar. It is set to ``(str, bytes)`` by default. Set it to ``None`` to
    treat strings and byte strings as iterable:

    >>> list(zip_broadcast('abc', 0, 'xyz', scalar_types=None))
    [('a', 0, 'x'), ('b', 0, 'y'), ('c', 0, 'z')]

    If the *strict* keyword argument is ``True``, then
    ``UnequalIterablesError`` will be raised if any of the iterables have
    different lengths.
    c                    s6    r	t |  r	dS zt|  W dS  ty   Y dS w )NTF)r   r   r   r  r  r   r   	is_scalars  s   
z zip_broadcast.<locals>.is_scalarN)r   ru  r   r   r%  r6   r  )r  r   objectsr  r*  new_itemrQ  iterable_positionsr(  r  r  r   r   r  r   r   ]  s*   




r   c           	      c   s    |dkr	t dt|d}tt}|du}| D ]:}t||kr6|d }|| dkr.||= n||  d8  < |r<||n|}||vrE|V  ||  d7  < || qdS )a  Yield the items from *iterable* that haven't been seen recently.
    *n* is the size of the lookback window.

        >>> iterable = [0, 1, 0, 2, 3, 0]
        >>> n = 3
        >>> list(unique_in_window(iterable, n))
        [0, 1, 2, 3, 0]

    The *key* function, if provided, will be used to determine uniqueness:

        >>> list(unique_in_window('abAcda', 3, key=lambda x: x.lower()))
        ['a', 'b', 'c', 'd', 'a']

    The items in *iterable* must be hashable.

    r   zn must be greater than 0r   Nr4   )r   r   r   r  r   r   )	r   r   rb  rV  rJ  use_keyr   
to_discardr5  r   r   r   r     s$   
r   c              	   c   s|    t  }g }|du}| D ]/}|r||n|}z||vr!|| n|V  W q ty;   ||vr6|| n|V  Y qw dS )a{  Yield duplicate elements after their first appearance.

    >>> list(duplicates_everseen('mississippi'))
    ['s', 'i', 's', 's', 'i', 'p', 'i']
    >>> list(duplicates_everseen('AaaBbbCccAaa', str.lower))
    ['a', 'a', 'b', 'b', 'c', 'c', 'A', 'a', 'a']

    This function is analogous to :func:`unique_everseen` and is subject to
    the same performance considerations.

    N)rP  r{  r   r   )r   rb  seen_set	seen_listr  rI  r5  r   r   r   r[     s$   r[   c                 C   s   t dd t| |D S )a2  Yields serially-duplicate elements after their first appearance.

    >>> list(duplicates_justseen('mississippi'))
    ['s', 's', 'p']
    >>> list(duplicates_justseen('AaaBbbCccAaa', str.lower))
    ['a', 'a', 'b', 'b', 'c', 'c', 'a', 'a']

    This function is analogous to :func:`unique_justseen`.

    c                 s   s"    | ]\}}|D ]}|V  qqd S r   r   )r3  rX  r  r   r   r   r:    r  z&duplicates_justseen.<locals>.<genexpr>)r9   r   )r   rb  r   r   r   r\     s   r\   c              	   c   s    t  }g }|du}d}t| D ]?\}}|r||n|}| p"||k}	|}d}
z||vr3|| d}
W n tyH   ||vrF|| d}
Y nw ||	|
fV  qdS )a  Classify each element in terms of its uniqueness.

    For each element in the input iterable, return a 3-tuple consisting of:

    1. The element itself
    2. ``False`` if the element is equal to the one preceding it in the input,
       ``True`` otherwise (i.e. the equivalent of :func:`unique_justseen`)
    3. ``False`` if this element has been seen anywhere in the input before,
       ``True`` otherwise (i.e. the equivalent of :func:`unique_everseen`)

    >>> list(classify_unique('otto'))    # doctest: +NORMALIZE_WHITESPACE
    [('o', True,  True),
     ('t', True,  True),
     ('t', False, False),
     ('o', True,  False)]

    This function is analogous to :func:`unique_everseen` and is subject to
    the same performance considerations.

    NFT)rP  ru  r{  r   r   )r   rb  r  r  r  previousr(  rI  r5  is_unique_justseenis_unique_everseenr   r   r   r]     s.   

r]   )rb  r   c             
   G   s8  |r| g|R n| }t |}zt| }}W n ty3 } z|tu r'td||W  Y d}~S d}~ww |du r]t|||dD ]\}	}
|
|	k rL|
|	}	}
|	|k rR|	}||
k rX|
}q?||fS || }}t|||dD ]-\}	}
||	||
}}||k r|
|	||f\}	}
}}||k r|	|}}||k r|
|}}qj||fS )a  Returns both the smallest and largest items in an iterable
    or the largest of two or more arguments.

        >>> minmax([3, 1, 5])
        (1, 5)

        >>> minmax(4, 2, 6)
        (2, 6)

    If a *key* function is provided, it will be used to transform the input
    items for comparison.

        >>> minmax([5, 30], key=str)  # '30' sorts before '5'
        (30, 5)

    If a *default* value is provided, it will be returned if there are no
    input items.

        >>> minmax([], default=(0, 0))
        (0, 0)

    Otherwise ``ValueError`` is raised.

    This function is based on the
    `recipe <http://code.activestate.com/recipes/577916/>`__ by
    Raymond Hettinger and takes care to minimize the number of comparisons
    performed.
    z[`minmax()` argument is an empty iterable. Provide a `default` value to suppress this error.Nr  )r   r   r   r5   r   r   )iterable_or_valuerb  r   othersr   r"  r   r   excr   r   lo_keyhi_keyx_keyy_keyr   r   r   rz     sF   


rz   Tc                 c   s    |dkr	t dg }d}d}| D ]:}||}	|r!|	|kr!t d||k}
|	| |k}|r>|s1|
r>t|V  |  d}d}|| ||	7 }|d7 }q|rUt|V  dS dS )aB  Yield batches of items from *iterable* with a combined size limited by
    *max_size*.

    >>> iterable = [b'12345', b'123', b'12345678', b'1', b'1', b'12', b'1']
    >>> list(constrained_batches(iterable, 10))
    [(b'12345', b'123'), (b'12345678', b'1', b'1'), (b'12', b'1')]

    If a *max_count* is supplied, the number of items per batch is also
    limited:

    >>> iterable = [b'12345', b'123', b'12345678', b'1', b'1', b'12', b'1']
    >>> list(constrained_batches(iterable, 10, max_count = 2))
    [(b'12345', b'123'), (b'12345678', b'1'), (b'1', b'12'), (b'1',)]

    If a *get_len* function is supplied, use that instead of :func:`len` to
    determine item size.

    If *strict* is ``True``, raise ``ValueError`` if any single item is bigger
    than *max_size*. Otherwise, allow single items to exceed *max_size*.
    r   z&maximum size must be greater than zerozitem size exceeds maximum sizer4   N)r   r%  r  r   )r   r*  	max_countget_lenr   batch
batch_sizebatch_countr   item_lenreached_countreached_sizer   r   r   rP   Y  s.   


rP   c                  '   s   t dd | D t}D ]}t|dk rtdqdg|  tt|d }dg| }	 t  fddt|D V  |d }d|d< ||krMd	S  | ||   |<  | dksi | t| d kr||  ||< ||d  ||< |d ||d < q0)
af  Like :func:`itertools.product`, but return tuples in an order such
    that only one element in the generated tuple changes from one iteration
    to the next.

        >>> list(gray_product('AB','CD'))
        [('A', 'C'), ('B', 'C'), ('B', 'D'), ('A', 'D')]

    This function consumes all of the input iterables before producing output.
    If any of the input iterables have fewer than two items, ``ValueError``
    is raised.

    For information on the algorithm, see
    `this section <https://www-cs-faculty.stanford.edu/~knuth/fasc2a.ps.gz>`__
    of Donald Knuth's *The Art of Computer Programming*.
    c                 s   s    | ]}t |V  qd S r   r;  rj  r   r   r   r:    r  zgray_product.<locals>.<genexpr>r$  z)each iterable must have two or more itemsr   r4   Tc                 3   s     | ]}|  |  V  qd S r   r   rq  r  all_iterablesr   r   r:    r  N)r%  r   r   r   r&  )rQ  iterable_countr   r  or)  r   r  r   rb     s,   

$rb   c                  g   sp    t tt| }z	dd |D }W n
 ty   Y dS w t|V  t|D ]\}}|D ]	||< t|V  q+q%dS )a  Yields tuples containing one item from each iterator, with subsequent
    tuples changing a single item at a time by advancing each iterator until it
    is exhausted. This sequence guarantees every value in each iterable is
    output at least once without generating all possible combinations.

    This may be useful, for example, when testing an expensive function.

        >>> list(partial_product('AB', 'C', 'DEF'))
        [('A', 'C', 'D'), ('B', 'C', 'D'), ('B', 'C', 'E'), ('B', 'C', 'F')]
    c                 S   rE  r   r  rF  r   r   r   r4    rG  z#partial_product.<locals>.<listcomp>N)r   r   r   r   r%  ru  )rQ  	iteratorsprodr(  r"  r   r   r   r     s   
r   c                 c   s$    |D ]}|V  | |s dS qdS )zA variant of :func:`takewhile` that yields one additional element.

        >>> list(takewhile_inclusive(lambda x: x < 5, [1, 4, 6, 4, 1]))
        [1, 4, 6]

    :func:`takewhile` would return ``[1, 4]``.
    Nr   )r  r   r   r   r   r   r     s   r   c                    s0   t |}tt fddt||t|dS )a  A generalized outer product that applies a binary function to all
    pairs of items. Returns a 2D matrix with ``len(xs)`` rows and ``len(ys)``
    columns.
    Also accepts ``*args`` and ``**kwargs`` that are passed to ``func``.

    Multiplication table:

    >>> list(outer_product(mul, range(1, 4), range(1, 6)))
    [(1, 2, 3, 4, 5), (2, 4, 6, 8, 10), (3, 6, 9, 12, 15)]

    Cross tabulation:

    >>> xs = ['A', 'B', 'A', 'A', 'B', 'B', 'A', 'A', 'B', 'B']
    >>> ys = ['X', 'X', 'X', 'Y', 'Z', 'Z', 'Y', 'Y', 'Z', 'Z']
    >>> pair_counts = Counter(zip(xs, ys))
    >>> count_rows = lambda x, y: pair_counts[x, y]
    >>> list(outer_product(count_rows, sorted(set(xs)), sorted(set(ys))))
    [(2, 3, 0), (1, 0, 4)]

    Usage with ``*args`` and ``**kwargs``:

    >>> animals = ['cat', 'wolf', 'mouse']
    >>> list(outer_product(min, animals, animals, key=len))
    [('cat', 'cat', 'cat'), ('cat', 'wolf', 'wolf'), ('cat', 'wolf', 'mouse')]
    c                    s   | |g R i S r   r   )r   r   r  r  r	  r   r   r     rr  zouter_product.<locals>.<lambda>r  )r%  r@   r   r   r   )r  xsysr  r	  r   r  r   r     s
   r   c                 g   s(    z| E dH  W dS  |y   Y dS w )a.  Yield each of the items from *iterable*. If the iteration raises one of
    the specified *exceptions*, that exception will be suppressed and iteration
    will stop.

    >>> from itertools import chain
    >>> def breaks_at_five(x):
    ...     while True:
    ...         if x >= 5:
    ...             raise RuntimeError
    ...         yield x
    ...         x += 1
    >>> it_1 = iter_suppress(breaks_at_five(1), RuntimeError)
    >>> it_2 = iter_suppress(breaks_at_five(2), RuntimeError)
    >>> list(chain(it_1, it_2))
    [1, 2, 3, 4, 2, 3, 4]
    Nr   )r   r@  r   r   r   ro     s   ro   c                 c   s&    |D ]}| |}|dur|V  qdS )zApply *func* to every element of *iterable*, yielding only those which
    are not ``None``.

    >>> elems = ['1', 'a', '2', 'b', '3']
    >>> list(filter_map(lambda s: int(s) if s.isnumeric() else None, elems))
    [1, 2, 3]
    Nr   )r  r   r   r   r   r   r   r`     s   r`   c                    s<   t tttt|  t fddtt	 d D S )ax  Yields all possible subsets of the iterable.

        >>> list(powerset_of_sets([1, 2, 3]))  # doctest: +SKIP
        [set(), {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}]
        >>> list(powerset_of_sets([1, 1, 0]))  # doctest: +SKIP
        [set(), {1}, {0}, {0, 1}]

    :func:`powerset_of_sets` takes care to minimize the number
    of hash operations performed.
    c                 3   s$    | ]}t t jt |V  qd S r   )r   rP  unionr   )r3  r,  setsr   r   r:  .  s
    
z#powerset_of_sets.<locals>.<genexpr>r4   )
r%  dictfromkeysr   	frozensetr  r   r   r&  r   r  r   r  r   r   "  s   r   c                  K   s@   t t}|  D ]\}}| D ]
\}}||| |< qqt|S )a2  
    Joins multiple mappings together using their common keys.

    >>> user_scores = {'elliot': 50, 'claris': 60}
    >>> user_times = {'elliot': 30, 'claris': 40}
    >>> join_mappings(score=user_scores, time=user_times)
    {'elliot': {'score': 50, 'time': 30}, 'claris': {'score': 60, 'time': 40}}
    )r   r  r   )field_to_mapr   
field_namemappingrb  re  r   r   r   rp   4  s   	rp   c                 C   s   t dd | D dd | D }t dd |D dd |D }t dd | D dd | D }t dd |D d	d |D }tt||t||S )
z\High precision sumprod() for complex numbers.
    Used by :func:`dft` and :func:`idft`.
    c                 s       | ]}|j V  qd S r   realr3  r   r   r   r   r:  K      z#_complex_sumprod.<locals>.<genexpr>c                 s   s    | ]}|j  V  qd S r   imagr  r   r   r   r:  K  r  c                 s   r  r   r  r3  r   r   r   r   r:  L  r  c                 s   r  r   r  r  r   r   r   r:  L  r  c                 s   r  r   r  r  r   r   r   r:  M  r  c                 s   r  r   r  r  r   r   r   r:  M  r  c                 s   r  r   r  r  r   r   r   r:  N  r  c                 s   r  r   r  r  r   r   r   r:  N  r  )r   complexr   )v1v2r1r2r  r  r   r   r   _complex_sumprodF  s
   r  c                 #   sX    t |   fddt D t D ] fddt D }t| |V  qdS )ao  Discrete Fourier Transform. *xarr* is a sequence of complex numbers.
    Yields the components of the corresponding transformed output vector.

    >>> import cmath
    >>> xarr = [1, 2-1j, -1j, -1+2j]
    >>> Xarr = [2, -2-2j, -2j, 4+4j]
    >>> all(map(cmath.isclose, dft(xarr), Xarr))
    True

    See :func:`idft` for the inverse Discrete Fourier Transform.
    c                        g | ]}t |  t d   qS )y             r   r%   r  Nr   r   r4  _       zdft.<locals>.<listcomp>c                       g | ]
}|    qS r   r   r  r  r5  roots_of_unityr   r   r4  a  rL  Nr   r&  r  )xarrcoeffsr   r  r   rT   R  s   rT   c                 #   s\    t |   fddt D t D ] fddt D }t| |  V  qdS )a{  Inverse Discrete Fourier Transform. *Xarr* is a sequence of
    complex numbers. Yields the components of the corresponding
    inverse-transformed output vector.

    >>> import cmath
    >>> xarr = [1, 2-1j, -1j, -1+2j]
    >>> Xarr = [2, -2-2j, -2j, 4+4j]
    >>> all(map(cmath.isclose, idft(Xarr), xarr))
    True

    See :func:`dft` for the Discrete Fourier Transform.
    c                    r  )y              ?r  r  r  r   r   r4  s  r  zidft.<locals>.<listcomp>c                    r  r   r   r  r  r   r   r4  u  rL  Nr  )Xarrr  r   r  r   rf   e  s   rf   c                 c   s     |D ]
}| di |V  qdS )a  Apply *func* to every item of *iterable* by dictionary unpacking
    the item into *func*.

    The difference between :func:`itertools.starmap` and :func:`doublestarmap`
    parallels the distinction between ``func(*a)`` and ``func(**a)``.

    >>> iterable = [{'a': 1, 'b': 2}, {'a': 40, 'b': 60}]
    >>> list(doublestarmap(lambda a, b: a + b, iterable))
    [3, 100]

    ``TypeError`` will be raised if *func*'s signature doesn't match the
    mapping contained in *iterable* or if *iterable* does not contain mappings.
    Nr   r   )r  r   r   r   r   r   rZ   y  s   rZ   c                 C   s    | dkr| t | t |   S dS )z0Upper bound for the nth prime (counting from 1).   g333333&@)r"   r  r   r   r   _nth_prime_ub  s    r  c                 C   s,   | dk rt tt| d }tt|| S )zgReturn the nth prime (counting from 0).

    >>> nth_prime(0)
    2
    >>> nth_prime(100)
    547
    r   r4   )r   r  ceilr  r:   r<   )r   limitr   r   r   r}     s   r}   )Fr  r   rH  r  )NNN)r   F)r   )NNF)r$  )r  FN)r  NFF)NFF)r  r  collectionsr   r   r   r   collections.abcr   
contextlibr   	functoolsr   r	   r
   r   heapqr   r   	itertoolsr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   queuer&   r'   r(   r)   r*   r+   operatorr,   r-   r.   r/   r0   sysr1   r2   timer3   recipesr5   r6   r7   r8   r9   r:   r;   r<   r=   r>   r?   r@   __all__r   r   ImportErrorfloatr   r   rI   ra   rq   r{   r   rQ   rg   rn   r   r   r   r   rW   rk   r   r   r   r   rG   r   rh   rj   ri   rL   r   r   r   r   r   r   r   r   r   r   rX   r   r   r   r   r   rY   r  r  rE   rC   rc   Hashabler   rR   ry   r  rr   rs   rt   r   r   rm   r  rF   rO   rU   rB   r   r   r^   rK   ru   rx   r   r   r   r   r   r   r:  rd   re   rV   r_   rv   rw   rH  rQ  rV  r   rl   BaseExceptionrA   rH   r   rD   r~   r|   r   r   r   rM   rN   r   rS   rJ   r   r   r[   r\   r]   rz   r   rP   rb   r   r   r   ro   r`   r   rp   r  rT   rf   rZ   r  r}   r   r   r   r   <module>   s$   @08s
# & 8K !:"`)B<=",#&---	%(I135'- U%0
.`0*- "
BC+=Q2%$('#= (#,."+9 28'*H
2*!
